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Introduction
Two approaches for pricing and hedging
credit risk: structural (Merton (1974)) and
reduced form (Jarrow and Turnbull (1992, 1995)).
An information based synthesis (Jarrow and
Protter (2004)).

 Structural models (Management’s
perspective, complete information)
continuous knowledge of the firm’s asset
value process. Default is the first hitting time
of a barrier and for a continuous sample path
process, default is a predictable stopping
time.

 Reduced form (Market’s perspective,
incomplete information) discontinuous
knowledge of the firm’s asset value process.
Default is the first jump time of a point
process, an inaccessible stopping time.



Structural models - parameters can only be
estimated implicitly via the use of market
prices.

Reduced form models - by construction -
are based on observables - the parameters
can be estimated directly.

Focus on reduced form models...



Reduced form credit risk pricing of risky debt
requires modelling two quantities:
(1) the likelihood of default (or the default
intensity, if it exists),
(2) the recovery rate in the event of default.

Emphasis in the literature has been on
modelling and estimating the default intensity.

The recovery rate usually assumes a simple
form, either:
(1) a constant proportion of the firm’s debt
value at the instant before default (called the
“recovery of market value”), or
(2) a constant proportion of an otherwise
equivalent Treasury’s value at default (called
the “recovery of face value”).



Existing models terminate if default occurs
(default is an absorbing state).

This implies that the models only price risky
debt prior to default.

But, markets exist for defaulted debt and the
debt trades for a "long" time. And, prices of
defaulted debt are the primary input to
reported estimates of recovery rates (Moody’s
(1999), (2000), Altman, Brady, Resti, Sironi (2003), and
Acharya, Bharath, Srinivasan (2004)).

Modelling defaulted debt prices, therefore, is
important for computing realized recovery
rates and the pricing of credit derivatives (e.g.
CDS and recovery rate swaps (a possible
new credit derivative)).



A
Moody's
Debt Recoveries for Corporate Bankruptcies
(June 1999)



A
Moodys
Historical Default 
Rates of Corporate Bond Issuers, 1920-1999
(Jan 2000)



A
Acharya, Bharath, Srinivasan
Understanding the Recovery Rates on Defaulted Securities
2004



The purpose is to present a model of the
firm’s debt prices (before and after default)
and the realized recovery rate in the context
of a reduced form model.

We distinguish between default, insolvency,
and bankruptcy (Jarrow and Purnanandam (2004)).

We use insights from the structural approach
to model the realized recovery rate based on
the firm’s assets. To retain the reduced form
structure, we employ the information
reduction methodology of (Guo, Jarrow and Zeng
(2005)).

We show that modelling the recovery rate
process also has an important impact on the
debt prices before default.



For clarity of presentation, we construct the
model in its simplest form.

We choose processes so that "closed form"
solutions are attainable. Closed form
solutions facilitate intuition, understanding,
and estimation.

Almost every aspect of the model’s structure
is easily generalized, at the expense of
obtaining more abstract representations,
numerical approximations, and more difficult
estimation procedures.



The General Framework

Traded are:
(1) a term structure of default free
zero-coupon bonds and
(2) a firm’s risky zero-coupon bond.

The firm’s risky zero-coupon bond will
represent a promised $1 to be paid at some
future date T.

If the firm defaults prior to time T, then there
will be a recovery rate, between zero and
one, paid per promised dollar, details later...



The Firm’s Asset Value Process

Two representative processes for the firm’s
asset value X tt0.

A Regime Switching Model

dX t X ttdt X ttdW
W is a standard one-dimensional Brownian
motion
tt0 is a finite-state continuous-time
Markov chain, independent of W, taking
values 0, 1,, S 1 with a known generator
q ijSS. Let q i ji q ij.

The drift and volatility coefficients ,are
functions of .
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Economic Interpretation

The state space trepresents the firm’s
credit ratings, with S 1 being the highest and
1 being the lowest rating. The last state 0,
represents default.

trepresents publicly available information.

Default is the random time given by
inft 0 : t0.

The default time has an intensity
t qt0.

Consistent with reduced form models.



The Jump-diffusion Model

X t X0e
1
2 

2tWt 
0st,s0

s.

W and are as in regime switching model.
Denote Tn the n-th jump time of .
i represents the jump amplitude in state i
with distribution function F i where
Pi 10.
Since 0 is the default state, we assume
P0 10.
i0iS1, and W are all independent.
Default is

inft 0 : t0

with intensity
t qt0.
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Default
Default occurs when a firm misses or delays
a promised payment on one of its financial
liabilities.

Default does not imply that the firm is
insolvent (or enters bankruptcy - a legal
condition), nor does it imply that all the firm’s
debt will not pay its promised payments.

In default, the firm faces deadweight losses
due to monitoring by the firm’s liability
holders, 3rd party costs, and suboptimal
investment decisions. The deadweight losses
are reflected in:
(1) changed drift and volatility coefficients 
and in regime switching,
(2) a sudden downward jump in the firm’s
asset value in the jump diffusion.



Insolvency and Bankruptcy

In default, there are two possible states of the
firm:
(1) solvency {X t x} and
(2) insolvency {X t x}.

Bankruptcy time

inft 0 : X t x,t0.

The insolvency barrier x is inclusive of all
deadweight costs incurred immediately at the
onset of default.

This implies that the insolvency does not
induce bankruptcy prior to default.



LABELS EVENTS RECOVERY

no default t0 NA

default t0 NA

solvent X t x NA

insolvent X t x NA

not bankrupt t0Xt x 1

t0Xt x 1

t0Xt x K

bankrupt t0Xt x R

Table 1: The Events and Recovery Rates
of the Firm at time t.

Bankruptcy occurs when the firm is in default
and the firm becomes insolvent. Either default
or insolvency alone does not induce
bankruptcy. The parameters satsify
R K 1.



Information
Investor A. - Management’s perspective
The augmented natural filtration of , X.
F t

A Xs,s, 0 s tN, where N is the
collection of all negligible sets.

Investor B.- Market’s perspective
and delayed information on X, observe only
at a finite set of times t1, t2, , tk, and when
the state of the firm changes T1, T2, , Tn, . . . .
F t

B is the augmented minimal filtration
generated by: 1t, n0

 X tk 1tkt, and
n0

 XTn 1Tntfor the regime switching model,
and 1t, n0

 X tk 1tkt, n0
 Tn1Tntand

n0
 XTn 1Tntfor the jump diffusion model.



The Regime Switching Model
Assume that the firm starts from a non-default
state, i.e., 00.

Theorem (Investor A) The bankruptcy timemin,Chas a predictable
component C and a totally inaccessible
component with intensity

d t
R,A 1t, t0qt01Xtx1

2 1Xtx

Remarks:
C : occurs when t0 and X t x.
 : occurs when X t x and 0 jumps
to t0.
(note: when X t x and 0, d t

R,A 0)



Theorem (Investor B) The bankruptcy time is
totally inaccessible.

If t tk, tk1Tn t Tn1, then
when t, the intensity is

d t
R,B


t0,ttkTn, 1

0
log x

XtkTn


0,ttkTn, 1
0

log x
XtkTn


, t0

qt0
1

t
ln x

XtkTn
ttTntk

tTntk
, t0

where
, t,yP inf

0st
Wss y

1 0

t y

2s3
e

ys2

2s ds for y 0

with i 
i
i

i
2 , standard cum normal,

and t 

t .



The Jump Diffusion Model
Theorem (Investor A) Let t0. Bankruptcymin,Cwith predictable and

 totally inaccessible with intensity

d t
J,A qt0 F0x

X t
1

2 F0x
X t



where F0 is the distribution function of 0.
Theorem (Investor B) The bankruptcy time 

is totally inaccessible. If t,
tk t tk1, Tn t Tn1, the intensity is

d t
J,B 

t, t tk Tn, 1
 log x

XtkTn


, t tk Tn, 1
 log x

XtkTn


, t0

qt00

1
F0dv

1
 log x

vXtkTn
t tkTn

t tk Tn
,

t0.



Remarks:

 The bankruptcy intensities depend on the
typical independent variables used in
empirical hazard rate estimation procedures
(Chava and Jarrow (2004)).

 The bankruptcy intensity depends on the
firm’s health t, the drift of the log(asset)
price process t

t2

2 , the volatility of the
log(asset) price process t, and the firm’s
debtasset value ratio x

Xt
.

 As the state of the firm changes from healthy
t0 to default t0, the bankruptcy
intensity increases. As the drift of the asset
price process t

t2

2 increases, the
intensity decreases. As the volatility of the
asset price process tincreases, the
intensity increases. As the firm’s debtasset
ratio increases, the firm’s bankruptcy
intensity increases.



The Recovery Rate Process
and Risky Debt Pricing

We assume the existence of an equivalent
martingale measure making the discounted
risky zero-coupon bond’s price a martingale.

Equivalent to assuming no arbitrage. Markets
may be incomplete. Fix a measure from the
set of equivalent martingale measures
(assume markets are in equilibrium).

For simplicity, we let the probability measure
P underlying the regime switching model and
the jump-diffusion model be this martingale
measure.



Review: The Traditional Approach
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Recall that is the default time.
Let the interest rate process be deterministic,
then

VC
i t, Te

t
T

rsds
ER1T1TF t

i

e
t

T
rsds1 1 RPT F t

ifor t 

with i A, B.

The difference between investor A and B’s
prices is quantified by the difference between
the conditional probabilities of A and B.



Proposition (A vs B’s conditional probs)

Let DAt, Tand DBt, Tdenote the
conditional default probability before time T
under the filtration F t

At0 and F t
Bt0,

respectively.
Suppose at time t, on the event 0 t,
XsF t

B Fs
A where s t and X tt0 is the

underlying Markov process,
then

DBt, T10t
DAs, T
DAs, t

10t.

Remarks:
(1) DB0, TDA0, T, because at time 0 both
investors A and B have the same information.
(2) When s t, DBs, Tand DAt, Tconverge
to the same value.
(3) One does not necessarily have
DAt, TDBt,Tor DAt, TDBt, T.



The Extended Model
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Proposition (Debt Pricing)

(1) if default has not happened, t, then

Vit, Te
t

T
rsdsE t

i1TK RE t
i1T,T

RE t
i1T.

(2) if defaulted by time t, but still solvent, and
assuming the default state is absorbing, then

Vit, Te
t

T
rsdsK RPinf

tuT
Xu xF t

iR

where E t
i EF t

iis under the martingale
measure with i A, B.



Example: Jarrow-Lando-Turnbull

Use the regime switching model.
Let tfollow the Markov chain as in Jarrow,
Lando and Turnbull (1997) with default (state 0) an
absorbing state.

The generator matrix q ijSS is of the form

Q q ijSS



0 0 0  0

q10 q1 q12  q1S1

    

qS10 qS11 qS12  qS1

where q ij 0 for all i, j, and q i ij q ij.



Investor A

Default by time t

VAt, T

Re
t

T
rsds

X tx

e
t

T
rsds

K R0 , T t, 1
0

log x
Xt

R X tx

No default prior to time t

VAt, Te
t

T
rsdsR 1 RPTt0

K Rt

T

x


Pds, XdzX t,t0

0 ,T s, 1
0

log x
z .



When S 2, this expression is further
simplified to

VAt, T

e
t

T
rsdsR 1 Req10Tt

K Rt

T

x


dzdsq10eq10st

1
1

log z
Xt

1s t

s t


0, T s, 1
0

log x
z ,

where is the densityof the standard normal
random variable.



Investor B
Define u tk Tn t tk1 Tn1.

Default by time t
Assuming default is an absorbing state, here
u t, and u t 0,

VBt, T

Re
t

T
rsds

if Xu x

e
t

T
rsds

K R0 ,T u, 1
0

log x
Xu

R

if Xux

No default prior to time t
Here u t, but u t,

VBt, Te
t

T
rsds

R 1 RPTt0

K Rt

T

x


Pds,XdzF t

B0 ,T s, 1
0

log x
z .



When S 2,

VBt, T

e
t

T
rsdsR 1 Req10Tt

K Rt

T

x


dzdsq10eq10st

1
1

log z
Xu

1s u

s u


0, T s, 1
0

log x
z 



A Comparison (Traditional vs Extended)

Traditional

VC
i t, Te

t
T

rsds
E t

i1TR1Tfor t 

Extended

V it,Te
t

T
rsds

E t
i1TR1TK R1T,T

for i A, B.



At Default

VC
i , TRe


T

rsds

V i, TRe


T
rsds

if insolvent

e


T
rsds

K RPinf
uT

XuxF
i Rotherwise

for i A, B.

For calibration purposes, readily available
are:
(1) the (average) market prices for defaulted
debt at time of default , denoted M, and
(2) the (average) market prices at the time of
emergence from financial distress, denoted
M.



In the traditional model, calibrate R by setting

MRe


T
rsds

.

For the extended model, set
R M

and implicitly estimate K by solving, if solvent
at ,

Me


T
rsds

K MPinf
uT

Xu xF
i M

K M Me
T

rsds
M

PinfuT Xu xF
i 

Note that at , both A and B have identical
information.

In terms of R and R:

K R  R R
PinfuT Xu xF

i 

In general, R, R and K differ.



Prior to Default

V it,TVC
i t, Te

t
T

rsdsR RPTF t
i

e
t

T
rsdsK RPT,TF t

i
for i A, B.

Using typical calibration methods, the random
recovery rate process makes a difference to
before default pricing.



Conclusion

 We constructed a model useful for pricing
risky debt both before and after default.

 A random recovery rate process is important
for pricing debt prior to default.

 This model should prove useful for
estimating recovery rates and pricing credit
derivatives.




