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Abstract

Increasing risk disclosure of banks, e. g. via risk reporting in their annual accounts,
is high on the agenda. In this paper, we analyse whether risk reporting of banks only
shows favourable effects as supposed by regulatory authorities or whether there exist
undesired effects as well. Referring to the literature on deposit contracts and bank
runs, we concentrate on the impact on depositors’ withdrawal decisions and banks’
asset risk. Risk reporting does not generally lead to a decrease in banks’ risk exposure
and the probability of bank runs, respectively. Instead it induces higher risk exposure

under certain conditions, which are identified in this paper.



1 Introduction

Since the implementation of the Law on Corporate Control and Transparency (KonTraG) in
1998, German banks have to report on their risk in their annual reports (see §§ 289 I, 315 I
German Commercial Code (HGB)). This rule is supplemented by the German Accounting
Standards GAS 5 “Risk Reporting” and GAS 5-10 “Risk Reporting of Banks”, which has been
the first accounting standard worldwide that regulates risk reporting in a comprehensive
manner. Moreover, bank regulators promote enhanced transparency to support market
discipline as a new, complementary element of bank regulation (see, e.g., the third pillar
of Basel II). As one of the relevant regulatory requirements, increased risk dislosure should

help to restrict banks’ risk-taking.

In this paper, we analyse whether risk reporting of banks only shows favourable effects
as supposed by the regulatory authorities or whether there exist some undesired effects as
well. Hirshleifer (1971) has already shown that additional information does not have to be
beneficial but may lead to negative consequences. The purpose of this paper is to analyse
the effects of a special kind of information, namely information about risk and especially the
risk reporting of banks. As deposits are typical of banks, we concentrate on the depositors’
reactions: How are the depositors’ decisions to withdraw their money or to keep it in the
bank influenced by the bank’s risk reporting”? Additionally, we look at the reaction of the

bank to possible changes in the depositors’ behaviour.

There is only little literature on the effects of risk reporting. Some empirical work on
capital markets reactions to risk disclosure is done by Rajgopal (1999), Linsmeier et al.
(2000), Rajgopal and Venkatachalam (1999), and Thornton and Welker (2000), but they do
not consider banks. The only paper comparable to ours is the analytical work of Cordella and
Levy Yeyati (1998). They show that risk disclosure may increase the ex ante probability
of bank insolvency. However, they use some quite restrictive assumptions as uniformly
distributed asset returns, and even more importantly, they do not model the characteristics
of deposits. In this paper we choose a more general framework insofar as we abstract from
a special distribution over asset returns. At the same time we are more specific including
main features of deposits, thereby trying to combine accounting theory and the theory of

financial intermediation.

Our work is related to the literature on deposit contracts and bank runs. Referring to
the seminal paper of Diamond and Dybvig (1983) we model a bank that takes deposits from
depositors with different time preferences for consumption but cannot observe these pref-

erences and invests its total funds in illiquid assets. However, this basic model is extended



in several aspects. Firstly, we consider risky assets. Chari and Jagannathan (1988) and
Jacklin and Bhattacharya (1988) were among the first who assumed risky assets to derive
so-called information-based bank runs, i.e. bank runs that were driven by (asymmetrically
distributed) information about asset returns. In the models with ex ante risky assets it
is usually assumed that the depositors receive a signal (sometimes with noise) on the true
value of asset returns before they make their withdrawal decisions.! In this paper, however,
uncertainty is not resolved before the end of the planning period, i.e. not before asset re-
turns are actually paid. Instead the depositors receive some interim information about asset
risk as the bank reports on the values of selected downside risk measures. We show that the
expected shortfall (Lower Partial Moment One, LPM;) and the target semivariance (Lower
Partial Moment Two, LPM,) are the risk measures relevant for the depositors’ withdrawal

decisions.

Secondly, we introduce shareholders to model the characteristics of banks and their
deposits.? The depositors are no longer residual claimants but get a fixed return provided
that the bank does not go bankrupt. Excess returns are paid to the shareholders. Equity
is assumed to be just so high that pure panic runs as described by Diamond and Dybvig
(1983) will not occur. So we can concentrate on bank runs that are based on the bank’s

risk reporting or the depositors’ expectation concerning asset risk.

Thirdly and most importantly, the purposes are different. Diamond and Dybvig (1983)
and the subsequent papers that show variations of their basic model intend to derive a
deposit contract that optimises risk sharing between depositors. In our paper, however, a
standard deposit contract is by assumption exogenously given to concentrate on (the change

in) depositors’ withdrawal decisions due to risk reporting.

We start our analysis with the analytical more convenient case of risk reporting. The
bank discloses information on its risk exposure and at the same time has to decide whether
to adjust the return on deposits, e. g. to prevent a bank run. This scenario is compared with

a scenario without risk reporting where a game of incomplete information between bank

! In Allen and Gale (1998) and Drehmann (2002), e.g., all depositors know the true value of asset
returns before they make their withdrawal decisions. Carletti (1999), Chari and Jagannathan (1988),
Chen (1999), Gorton and Pennacchi (1990), Jacklin (1989), and Jacklin (1993) assume that at least
a fraction of depositors is perfectly informed. A signal with noise is modelled by Boonprakaikawe
and Ghosal (2001), Dasgupta (2001), Goldstein and Pauzner (2002), Gorton (1985), and Rochet
and Vives (2002). In Alonso (1996), Bougheas (1999), Calomiris and Kahn (1991), Chen (1994),
Jacklin and Bhattacharya (1988), Loewy (1998), and Wolf (1999) the depositors update the discrete
probability distribution over asset returns. However, the random returns may only take two values.
Continuous distribution functions and risk measures other than the probability of the low return
are not considered.

2 As Dowd (1992), p. 112, put it, the demand deposits of Diamond and Dybvig (1983) are “a kind
of debt-equity hybrid” because the depositors who leave their deposits in the bank until the final
period only get a residual payment. The intermediary is “more like a mutual fund than a bank”.
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and depositors has to be analysed. In this game different kinds of equilibria are possible
depending on the parameters of the model. On the one hand, pooling equilibria may be
observed, in which an “average” return on deposits is agreed upon regardless of the bank’s
asset risk. No bank run will occur. On the other hand, equilibria with adverse selection
may exist: Only in case of high asset risk, the bank offers an adequate return on deposits.

Otherwise, it will leave the market.

Provided that without risk reporting there exists a pooling equilibrium, risk reporting
leads to higher asset risk of rather risky types of banks (or to a bank run on these banks)
while reducing the risk of a bank with already quite low asset risk. If, however, in case of no
risk reporting only the riskiest types of banks offer a return on deposits so that the deposits
are not withdrawn, risk reporting may help to prevent this adverse selection. According to
these results, risk reporting does not generally decrease banks’ risk exposure or lessen the
probability of bank runs, but may lead to an increase in insolvency risk of risky banks. Such
an ex post increase in the risk exposure of a rather risky bank is the more likely, the less
risk averse the depositors, the smaller the return on assets in case of early liquidation, the
higher the a priori probability of low asset risk, and the smaller the range of possible levels
of asset risk. We also derive conditions under which a bank’s risk exposure in case of risk

reporting is ex ante higher than in the scenario without risk reporting.

The paper is organised as follows: In Section 2 we introduce the basic assumptions and
time structure of our model. Section 3 shows the equilibrium behaviour of the bank and its
depositors if the bank reports on its asset risk. The equilibrium behaviour in the benchmark
scenario without risk reporting is analysed in Section 4. In Section 5 the results of both
scenarios are compared to derive the effects of risk reporting. Section 6 provides a summary

and outlook.

2 The Model

Basic Assumptions

Risk reporting of a monopolistic bank, which holds deposits and equity, is analysed in
a three period model with 7"=0,1,2. In period T' = 0 each depositor is endowed with one
dollar. We assume a continuum of unit mass of ex ante identical, risk averse depositors. The
utility function u(-) is strictly increasing and strictly concave and equals (or may at least be

approximated by) a second-degree polynomial. According to Diamond and Dybvig (1983)



there exist two types of depositors. Type 1 (2) wants to consume at T =1 (T = 2).3 In
period T' = 1 each depositor learns his type only. However, the fraction of type 1, ¢ € (0, 1),
and thus the a priori probability of being type 1 are publicly known at 7" = 0. For each
dollar deposited the bank promises to pay d; (d2) provided that the depositor withdraws at
T =1 (T = 2). The deposit contract agreed upon at 7' = 0 is exogenously given with

1<d1<d2:d12}.4

With d; > 1 the depositors of type 1 obtain more than the invested dollar. If d; > d»,
the depositors of type 2 would in any case withdraw their money at 7" = 1 and store it
privately until 7' = 2. Depositors’ decisions would be independent of any (risk) information
about the bank and hence trivial. The deposit contract is neither contingent on depositors’
type, which is not publicly observable, nor on bank’s risk. Moreover, the depositors can
withdraw their deposits at any time. Thus we use a standard (demand) deposit contract.’
In compensation for the depositors’ right to withdraw at any time, the bank has got the
option to change the promised return d, at 7= 1. With this option we take into account

another important feature of demand deposit contracts.

To model the characteristics of banks, the bank does not only issue deposits but also
raises equity, C', at T" = 0. In reality, banks have to raise a certain amount of equity to
receive the bank charter thus being able to issue deposits. Moreover, there exist regulatory
restrictions such as Basel I or II that require a minimum amount of equity to hold risky
assets. The risk neutral shareholders have limited liability. They are the residual claimants.
In non-bankruptcy states at 7' = 2 the shareholders get the bank’s final net worth whereas
the depositors obtain a fixed repayment of their deposits, which is dy (per depositor). The
shareholders know for sure that they will consume at 17" = 2. The bank’s equity, C', cannot
be increased or reduced until 7" = 2. The shareholders and bank managers are identical so

that agency conflicts between bank (owners) and managers are excluded.”

At T = 0 the bank invests its total funds in risky, illiquid assets. The random return at

3 Dowd (1992), Drehmann (2002), Gorton and Pennacchi (1990), and Hellwig (1994), also assume
corner preferences.

4 See also Drehmann (2002) and Rochet and Vives (2002), who take the deposit contracts as given

and analyse depositors’ withdrawal decisions. The deposit contract shows similar properties than

the optimal deposit contract of Diamond and Dybvig (1983). In case of riskless asset returns, they

derive the optimal deposit contract with 1 < dy < d> < R.

“The typical deposit contract is ‘noncontingent’”; Allen and Gale (1998), p. 1256.

Notice that d» is a variable in our model. The symbol d3 is used if we refer to the level of d> agreed

upon in T'= 0.

" For the assumptions concerning bank shareholders see also Dowd (1992), p. 124 f., and Wolf (1999),
p. 274-279. Rochet and Vives (2002) also introduce shareholders in their analysis of the depositors’
withdrawal decisions but do not further characterise these shareholders. They state rightly that “a
proper modeling of the role of equityholders remains to be done”, Rochet and Vives (2002), p. 12.

4



T = 2 (per invested dollar), R, is continuously distributed over the interval [0, R] and not
known before realisation at 7" = 2. If assets are liquidated at 7" = 1, they earn a riskless
but rather low return (per invested dollar) of » € (0,1]. In period 7' = 1 the bank knows
the expected return, E[R] > 1, and always reports on this value. With this assumption we
isolate the impact of risk reporting on depositors’ behaviour from the impact of information
about expected returns. At T = 1, the bank also obtains information about asset risk. It
knows the (continuous) distribution function over asset returns, F'(R), and hence the Lower
Partial Moments, LPM;(-), for a given target, RF € [0, R]. They are defined as follows:

Rlc
LH%U#FE/ (R* — R)'dF(R), i=0,1,2,...
0
Without risk reporting the depositors cannot observe asset risk.

For analytical convenience, we assume that all but one parameters of the distribution
function are common knowledge.® Moreover, common priors are assumed, i. e. the bank and
its depositors know the a priori probability of the unknown parameter 0, p(6), and the set
of all possible values of §, ©. At T = 1 the bank is informed about . In this paper risk
reporting means that the bank reports on the expected shortfall, LPM; (R*), and the target
semivariance, LPM,(R¥).” Both are a function of the target R* as well as of 0. LPM, (R¥)
is positively related to 6:

gggﬁﬁzovmemﬁ]
where the inequality holds strictly for at least some values of R¥. The maximum of 6, § € O,

characterises maximum risk insofar as, for a given R¥, LPM,(R¥) reaches its maximum.

Time Structure

The time structure of our model is as follows (see also Figure 1, p. 31): In period T =0
the bank is founded by the shareholders. Depositors place their money in the bank. Total
capital is invested in risky assets. As we concentrate on a bank with deposit contracts that
already exist, the decisions in period 17" = 0 are taken as given. Instead we look at the

behaviour of the bank and its depositors in the following period.

In period T = 1 nature chooses asset risk, which is observed by the bank. Alternatively

we consider two scenarios: In the first scenario the bank truly reports on asset risk, e.g. to

8  Notice that the expected return, E[R], cannot be the unknown parameter because E[R] is common

knowledge at T' = 1.
Below we define R* and show that the risk measures relevant for the depositors’ withdrawal decision
are indeed LPM,(R*) and LPM,(R").



comply with regulatory restrictions. In the benchmark scenario the bank does not disclose
asset risk so that there exists a game of incomplete information between bank and deposi-
tors, which, however, can be transformed into a game of imperfect information (Harsanyi,

1967/8). Depending on asset risk, different types of banks are distinguished.

In both scenarios the bank informs about the expected value of asset returns. Moreover,
the bank may offer an adjustment of the return on deposits, d;. The bank has to decide
how to change d, to maximise its expexted net worth at 7" = 2. The support of dy is
D = [dy, Rd,/r]. The bank will only offer an adjustment of d, if it improves the expected

final net worth. Otherwise it refrains from changing ds.

Each depositor learns his type at 7' = 1. Type 1 withdraws his deposit to consume at
T = 1. The bank liquidates assets to repay deposits. Type 2 has to decide whether to
withdraw at 7" = 1 as well (and store the money privately until 7" = 2) or to wait until
T = 2. If the bank offers an adjustment of d, the depositors of type 2 can accept this offer

or withdraw their deposits.

Type 2’s withdrawal decision is influenced by the question whether the bank may be
liquid or illiquid at the end of period 7" = 1. The bank is still liquid at the end of period
T =1 and can continue its business in period 1" = 2 if the liquidation value of assets exceeds
the promised returns on the deposits withdrawn:

r(C + D) > wd,D & C—i—(l—wle)D>0 (1)

where D is the amount of deposits and w € [t, 1] the fraction of depositors who withdraw
at T = 1. The right-hand inequality shows the (positive) amount of assets at the end of
period T' = 1.

The fear of the bank’s illiquidity caused by too many deposits withdrawn at 7" = 1 is
the main reason why panic runs (Diamond and Dybvig, 1983) may exist. To concentrate
on information-based bank runs we rule out the possibility of panic runs by assuming that
equity is just so high or the debt-to-equity ratio is so low that the bank can repay all deposits
(w=1) in period T' = 1:

D r
r(C+ D) =dD = g_dl—r' (2)

With (2) the assets at the end of period T' = 1 simplify to

C+<1—w—dl)D:(1—w)ﬁD.
T T



In period T = 2 the returns on these assets are realised. The depositors who have
not withdrawn early obtain the promised return, ds, provided the bank is solvent. The
shareholders receive the bank’s final net worth. The bank is solvent at 7" = 2 if the returns
on assets that were not liquidated at 7" =1 are at least as high as the promised returns on

deposits not yet withdrawn:

d
R(1 —w)—=D > (1 —w)dyD. (3)
r
Referring to the sign of equality in (3), the return critical for bank solvency at T' = 2 is
defined as

dar
RkE Ell
R+e€€e>0 for w=1.

for t<w<1,

Only if R > R*, the bank can pay the promised return d,. Otherwise it is insolvent at
T = 2.9 Asset returns are proportionally distributed among depositors. Each depositor
gets

-  =R— 1.
A—wp T vs

If w =1, the bank goes into liquidation at the end of period 7" =1 and thus, by definition,
is insolvent at T =2 as well (R < R¥ =R +¢ VR €0, R]).

3 Equilibrium Behaviour With Risk Reporting

In this section we have a closer look at bank behaviour and depositors’ decisions!! at T = 1.
The bank learns its asset risk. It gets information about the value of # thus knowing LPM, (-)
and LPM,(-) and reports on the values of these downside risk measures. Besides, it has to
decide whether to offer an adjustment of the promised return on deposits, ds, anticipating

the depositors’ reactions to such an adjustment and to the risk disclosure.

A depositor who decides whether to withdraw at 7' = 1 knows that, according to (2),
the bank can pay out all depositors at 7" = 1. Therefore, it will not be illiquid as long as
the depositor himself keeps his deposit in the bank. Even if all other depositors withdrew

10 We use the terms “illiquidity” and “insolvency” to clarify whether the bank fails in period T = 1

or T'= 2. The bank is called illiquid if there are too many depositors who want to withdraw their
deposits at T' = 1. A bank is insolvent if asset returns at T = 2 are too low compared with the
bank’s liabilities.

As type 1 withdraws at T' = 1 regardless of any information about asset risk, we restrict our analysis
to the behaviour of type 2 depositors and call them simply “depositors”.

11
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their money, the depositor would get d; if he withdrew as well. For this reason the return
on deposits at T = 1 is riskless whereas the return at 7' = 2 is still risky. The depositor
waits until 7" = 2 if the expected utility of the return at 17" = 2 is at least as high as the
utility of d;:'?

E [u (min {dQ, R%})] - /ORk u <R%> dF(R) + /}:u(@) dF(R) > u(dy).  (4)

The depositors’ decisions are independent of w and thus of the behaviour of other depositors.

The depositors follow dominant strategies.

Using integration by parts the expected utility of the return at 7' = 2 can be transformed
into (see appendix A.1, p. 21)

E [u <min {dQ, R%})] = u(dy) + nzl% <—%)iu<i>(d2)LPM,~(R’f)

n Rk
+ (—ﬂ> / u™ (Rﬁ> dF™(R)
r 0 r

where FI"I(.) results from integrating F'(+) n times. u(?(-) symbolises the ith derivative of
the utility function. Since we assume that the utility function may at least be approximated

by a second-degree polynomial, condition (4) can be rewritten as

A™(dy) = u(ds) — %u(l)(dQ) LPM;(RF) + ;i—?iu@)(dg) LPMy(RF) — u(dy) > 0. (5)
A™(dy) equals the difference between the expected utility of waiting until 7 = 2, Ffu(-)], and
the utility of withdrawing at "= 1, u(d;). It depends on the expected shortfall, LPM;(+),
and the target semivariance, LPM,(-), which are disclosed by the bank. The return critical
for bank solvency, R*, is the relevant target. Usually F[u(-)] is lower than u(ds) because ds
is only paid in solvency states.'”®> The higher LPM,(-) and LPM,(-), the lower is E[u(-)] and
hence the difference A™(ds). Given the return ds, the depositors decide to wait provided

that asset risk is sufficiently low so that A™(d,) is nonnegative.'*

Alternatively a depositor’s withdrawal decision may be described as a function of the
promised return, ds, given the realised value of . A™(d,) strictly increases in d as long as
the shortfall probablility, LPM;(-), is lower than 1:

OA™(dy)

= u(d2)(1 = LPMy(R*)) > 0 if LPMy(R") < 1. (6)

12 Notice that w < 1 and thus R* = dar/d; because by calculating the expected utility of waiting

until 7' = 2, the depositor assumes that he himself does not withdraw at 7' = 1.
13 Only if assets are riskless (LPM; (-) = LPM>(-) = 0), it holds that E[u(-)] = u(ds).
14 By assumption the depositors wait until T = 2 according to their preferences for consumption if

they are indifferent between withdrawal at 7' =1 and waiting until 7' = 2.

8



Even though the critical return for bank solvency, R¥ = dyr/d;, and thus LPM,(-) and
LPM,(-) increase in dy, a high dy is optimal for the depositors. For a given 6 it holds that
the higher dy and thus R*, the higher is the depositors’ part of asset returns and the lower
is the shareholders’ part. As 02A™(d,)/ddy”> < 0, A™(ds) reaches its maximum value if dy
is so high that the bank is insolvent at 7" = 2 with probability one, i.e. LPMy(-) = 1. Then
a further increase in dy has no effect on the depositors’ behaviour. They will get all asset
returns at 1" = 2 regardless of the realised value of R because the bank will go bankrupt in

any case. There is nothing left for the shareholders.

Depending on the return ds offered by the bank, the depositors’ behaviour at 7' =1 can

be written as follows:

dy >dP = w=t, (7)

dy <dP = w=1 (8)

where dJ' is implicitly defined by A™(d3*) = 0. Only if the risk premium is high enough
(compared to the risk disclosed), depositors are willing to keep their deposits in the bank

(w = t). Otherwise we will observe a total bank run (w = 1).

In period T" = 1 the bank maximises expected net worth at 7" = 2. The final net
worth equals the difference between asset returns and promised returns on deposits not yet
withdrawn (see also eq. (3)) provided that the bank is liquid at 7" = 1 and solvent at 7' = 2.
Taking into account the depositors’ reactions described above we can calculate the expected
final net worth as (see appendix A.2, p. 22)

B[V (dy, w)] = E {max {0, R(1 - w)%D - w)ngH

(9)

{(1t>‘f}D<E[Rle+LPM1<Rk>> -

0 w = 1.

If only the depositors of type 1 withdraw their deposits (w = t), E[V (d2, w)] may be positive.
The expected shortfall, LPM,(RF), is the relevant risk measure. The higher 6, holding R*
constant, the higher is LPM;(R*) — at least for some RF € [0, R] -, and the higher is the
expected final net worth because, due to its limited liability, the bank has to pay less to
depositors at T = 2. If all depositors withdraw at 7" = 1 (w = 1), the bank will be

liquidated. The final net worth is zero.

The bank, which reports on the true values of LPM (-) and LPM,(-), anticipates whether
the depositors prefer to withdraw or to wait. The bank can prevent a bank run by offering

a return dy which fulfills the inequality in (7). This might be optimal although, for w = ¢

9



and LPM,(-) < 1, the expected final net worth decreases in d:
OE[V (da, )]

3, = (1 —1)D(1 — LPMy(R")) < 0. (10)

Result 1 A bank that reports on its risk exposure offers a return on deposits, dy*, if
LPMy(dy'r/dy) < 1. dy is implicitly defined by A™(dy') = 0. The depositors accept this
offer and leave their deposits at the bank.

If LPMy(dy'r/dy) = 1, the bank will not offer an adjustment of the return on deposits.
The depositors’ reaction to the bank’s risk reporting is as follows: w(dy > d3') =t and

w(dy < dy') =1, respectively.

Proof: See appendix A.3, p. 22.

The bank will pay the return d3', which prevents a bank run (w = t), if its expected
final net worth, E[V(d}',t)], is higher than in case of a total bank run (w = 1) and thus
higher than zero. The expected final net worth is equal to zero if and only if the shortfall
probability, LPMy(d3y'r/dy), equals one. That means the return on deposits required by
depositors to keep their deposits at the bank is so high that irrespective of R the bank goes
bankrupt at T = 2.

If the bank does not offer dy* due to LPMy(dy'r/d;) = 1, the bank will either be liquidated
at 7' =1 or insolvent at 7' = 2. A return on deposits initially agreed upon and still valid
at T = 1 that is lower than dJ* leads to a risk-based bank run at T = 1.'"> This bank run
is caused by the information about asset risk related to the risk premium offered by the
bank. From the depositors’ point of view, the risk is too high for the contracted return on
deposits. If at 7' = 0 the bank and its depositors have agreed upon a return, dj, that is
higher than d3, the bank becomes insolvent at 7" = 2 irrespective of the realised value of R.
The depositors decide to wait until 7' = 2 as the expected utility of the liquidation value of
bank assets (per deposit) is as high as the utility of withdrawal. Bank solvency at T = 2
would only be possible if the return on deposits fell below d3'. However, depositors would
not accept such an offer but withdraw their deposits at 7' = 1. Therefore, the bank refrains

from changing the return on deposits.

4 Equilibrium Behaviour Without Risk Reporting

In this section the benchmark scenario without risk reporting is analysed. In period T'=1

the bank receives the same information as in the previous scenario. Again it has to decide

15 We call it risk-based instead of information-based bank run to emphasise that a certain kind of

information, namely information about asset risk, is disclosed.

10



whether to adjust the return on deposits anticipating the depositors’ reactions to such an

adjustment. The depositors are not informed on asset risk but have certain prior beliefs.

Given the return on deposits, d, and based on the a priori probabilities, p(#), a depositor
decides not to withdraw his deposit at 17" = 1 if the difference between the expected utility
of the return at 7' = 2 and the utility of d; is nonnegative:

A°(dy, p(0)) =) p(0) A™(ds]0)

0co

(dz)—%u (da) LEML(RY) + S5 (o) LPM(RY) — () (M

>0
where LPM;(R*) = = " p(0) LPM;(R¥|0), i=0,1,2.
0co
If we compare condition (11) with condition (5), it becomes clear that the depositors’ deci-
sions are no longer based on (the true values of) LPM;(-) and LPM;(-) but on their beliefs
concerning asset risk, LPM; (-) and LPMs(-).

Like in the scenario with risk reporting, waiting until 7" = 2 becomes more advantageous
(or less disadvantageous) when d, increases,
0A°(da, p(0))
ddy
The depositors decide to withdraw if the return dy is so low that A°(ds, p(#)) is negative.
Thus it holds for A°(d3,p(f)) = 0:

= u(dy)(1 — LPMy(R*)) > 0, aslongas LPMy(R") < 1. (12)

dy > dg = w =1, (]_3)
dy<d = w=1. (14)

The depositors’ behaviour depends on their beliefs, which, however, could change because
of the decision of the bank. The depositors update their beliefs if the return on deposits
offered by the bank at 7" = 1 provides some information on asset risk. Then ds serves as a
signal for LPM;(-) and LPM,(-), and in (11) p(@) is substituted by p(6|dy).

The bank maximises its expected final net worth. Taking into account (13) and (14) we
get (see again appendix A.2, p. 22)
dy K k
(1 —t)—D(E[R] — R* + LPM,(R")) w=t
r

if ’ (15)
0 w = 1.

E[V(dy, w)] = {

At first glance (15) looks like (9), but the returns d3* and d, which define the borderline
between bank run and waiting until 7' = 2, are not necessarily identical. (They are in fact
identical if LPM,(-) = LPMy(-) and LPMy(-) = LPMy(-).)

11



As (10) still holds, the expected final net worth decreases in dy (for w =t and LPMy(-) <
1). Therefore, the bank will not offer more than d5. Since the negative relationship between
dy and E[V(dy,t)] holds for each type of bank irrespective of its asset risk, a separating
equilibrium where risky types of banks offer high returns on deposits and less risky types
offer low returns does not exist. In case of high asset risk, a bank can imitate a bank with

low asset risk and offer d as well.

The bank will offer d3 only if E[V(d3,t)] exceeds the expected final net worth in case of

a bank run:

BIV(d2,1)] > E[V(dy1)] =0 < B[R] > Cflr _LPM, <C;217“> | (16)

Whether the inequalities in (16) are fulfilled for any type of bank, i.e. for any § € ©
and hence for any LPM,(-), is decisive for the equilibrium in the game between bank and

depositors.'® In the following we will show that different kinds of equilibria are possible.

Result 2 In the scenario without risk reporting, pooling equilibria exist in the game between

bank and depositors, i. e. each type of bank offers dS, if

(0]
dsr

LPM, < y

><1 Vo e®©

1

where dS is implicitly defined by A°(d$, p(f)) = 0.

The depositors behave as follows: w(dy > d3) = t and w(de < d3) = 1. The possible
equilibria only differ in the depositors’ out-of-equilibrium beliefs, p(0|ds # dS).

Proof: See appendix A.4, p. 23.

In a pooling equilibrium the inequalities in (16) are fulfilled for all LPM,(-) and thus for
all # € ©. Regardless of its asset risk, the bank always sends the same signal offering d$.

Therefore, the depositors are not able to update their prior beliefs.

Figure 2, p. 32, shows an example with three possible values for 0, i.e. three types of
banks. The risk increases in 6 insofar as LPM,(RF|0,) < LPM,(R*|0y) < LPM,(R*|05) with
0, < 0y < 03 and 0 < R*¥ = d9r/d, < R.'™ Moreover, it holds that LPMy(RF) < 1 for all
R* < R and for all §. The expected return, E[R], is publicly known and therefore constant.

16 Notice that E[R] is publicly known and hence the same for all types of banks. Therefore, an increase

in @ leads to a mean preserving spread.

LPM;(R*) may be geometrically interpreted as the area under the curve of F(R) between 0 and
RF. Notice that the shortfall probability decreases in § for all R* € (E[R], R): LPMy(R*|0;) >
LPMo(RF|6>) > LPMy(R"|6s).
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As long as d3 is lower than its maximum value, Rd; /r, which means that R¥ = d3r/d; < R, a
pooling equilibrium exists. Table 1, p. 32, provides another, numerical example of a pooling
equilibrium. Each type of bank offers dj = 1.2629 to prevent a bank run as the expected
final net worth, E[V (d3,t)], is always positive.

Result 3 Adverse selection is observed in the game between bank and depositors if

0
dsr

d

LPM, ( ) =1 for at least one but not all f € ©

and if d3 # dy # d$*. dS is implicitly defined by A°(dS, p(0)) = 0 whereas dS* is given by
A(dy*, p(6]dsT)) = 0.

We may observe partial pooling as well as lemon equilibria where only the riskiest type of
banks offers an adjusted return on deposits, dS*. If, however, LPMy(dyr/d;|0) = 1, even

the riskiest type refrains from offering a new return on deposits.

Proof: See appendix A.5, p. 24.

The examples in Tables 1, 2, and 3 differ in the a priori probabilities, p(¢). Due to the
increase in p(f3) and the simultaneous reduction in p(6;) and p(6,), LPM,(-) and LPM,(-)
increase. Therefore, the depositors require a priori a higher risk premium so that df increases
as well: 1.2629 < 1.6128 < 1.8434.

In the example in Table 3 the a priori required return on deposits, dj = 1.8434, is too
high for the bank with the lowest asset risk, i.e. the lowest LPM;(-) (and LPMy(-)). It
would become insolvent at T" = 2 irrespective of the realisation of R if it offered dj. As
the expected final net worth would be zero, the bank refrains from offering d but sticks to
dj. Only the riskier banks would like to offer d§ = 1.8434. Knowing this, the depositors
update their beliefs. Finally, adverse selection leads to a lemon equilibrium. The depositors
expect the highest risk, and only the riskiest type of bank offers a return on deposits,
d3* = 1.9770, that prevents a bank run and makes sure that the expected final net worth is
positive (E[V (ds*, t)] = 3.1322). If, however, 6, or 0y are realised, the depositors withdraw
their deposits because the initially promised return, which is still valid, is lower than the

equilibrium return, dy < d5*.

If dy > d$* and asset risk is rather low so that E[V (d$*,t)] = 0, the depositors’ behaviour
is somewhat different. The return on deposits agreed upon at 7' = 0 induces bankruptcy
at T' = 2 irrespective of the realised value of asset returns whereas the reduction necessary

for the possibility of bank solvency at T" = 2 would lead to a bank run and thus liquidation

13



at T = 1. As the bank cannot improve E[V(-)], it does not offer d$* but stick to the “old”
return on deposits, dy. Because of dj > d$* the depositors decide not to withdraw at 7' =1
but wait for the liquidation value of the insolvent bank at 7" = 2. A bank run that induces
the banks with lower asset risk to leave the market at 7" = 1 cannot be observed. Instead

these types of banks will go bankrupt at 7" = 2, thus leaving the market at 7" = 2.

If the critical return on deposits that is based on the depositors’ prior beliefs equals the
initially contracted return, d§ = dj, another pooling equilibrium can be observed. In this
case the lowest value of dy that prevents a bank run at 7" = 1 has already been contracted
at T' = 0. Therefore, the bank has no incentive to change it and does not offer a new return
on deposits. It always sends the same signal regardless of its asset risk. In the example of
Table 2, p. 33, and Table 3, p. 34, such pooling equilibria would exist if d§ = 1.6128 and
1.8434, respectively.

Result 4 In the scenario without risk reporting, pooling equilibria without a change in the

return on deposits exist in the game between bank and depositors if
dy = dj.
d$ is implicitly defined by A°(d3,p(0)) = 0.

A bank run cannot be observed. The possible equilibria only differ in the depositors’ out-of-
equilibrium beliefs, p(0|dy # d3).

Proof: See appendix A.6, p. 25.

An overview of the various equilibria in the game between bank and depositors without
risk reporting is provided in Table 4, p. 34. The pooling equilibria described in Result 2 can
be found in the central column whereas the pooling equilibria of Result 4 are characterised
by d$ = d} (see third row). According to Result 3 partial pooling or lemon equilibrium can
be observed if the bank’s expected final net worth is not always positive (see third column)
and if the return on deposits contracted at 1" = 0, d3, is neither equal to the critical return

based on the depositors’ prior beliefs, d3, nor to the equilibrium return, d*.

5 [Effects of Risk Reporting

In equilibrium a bank reporting on its asset risk offers a return on deposits, d3*, which is just

high enough to prevent a (risk-based) bank run, provided that the expected final net worth
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is still positive. If the bank does not inform about asset risk, different kinds of equilibria
are possible. A pooling equilibrium may be observed, i.e. at T" =1 each type of bank offers
the same return on deposits, dj. The depositors keep their deposits in the bank. Besides,
we have found equilibria where only the riskiest types of banks offer an adequate return on
deposits whereas less risky types leave the market. In the following, let us assume that the
bank has not disclosed its asset risk so far and now risk reporting is introduced. What are

the effects of risk reporting?

Result 5 Provided that without risk reporting each type of bank offers the same return on
deposits and no bank run occurs (pooling equilibrium), risk reporting leads to a higher risk
exposure of rather risky types of banks (or to a bank run on these banks) while reducing the

risk exposure of banks with already quite low asset risk.

Proof: See appendix A.7, p. 25.

On the one hand, a bank with higher asset risk than a priori expected has to pay a
higher return on deposits in case of risk reporting than without risk reporting (d5* > d3).
The increase in the equilibrium return on deposits, however, raises the bank’s liabilities at
T = 2 and hence the return on assets critical for bank solvency, R*. Finally insolvency risk
increases, i.e. LPM;(R*) and LPM,(RF) rise, as long as LPMy(R*) > 0. If such a bank
refused to pay dj’ but still offered dj, a bank run would occur because the risk premium

would be too low.

On the other hand, a quite riskless bank may reduce the return on deposits without
increasing the danger of a bank run if it reports on its asset risk. As a consequence insolvency
risk of this already rather riskless bank is lower in case of risk reporting than without risk
reporting. However, this reduction in insolvency risk cannot be observed if without risk
reporting the bank is already riskless, which means that the promised return, dj, is so low
that LPMy(R*) = LPM;(RF) = LPMy(R*) = 0. Then depositors will get dj at T = 2

irrespective of the realised value of asset returns.

If we suppose a lemon equilibrium or partial pooling as described in Result 3, risk
reporting helps to overcome the problem of adverse selection. Not only very risky types of
banks, but also banks with lower asset risk are able to continue their business until 7' = 2
because they can credibly communicate their low risk. Therefore, a rather riskless bank can
pay a lower return on deposits than in equilibrium without risk reporting. As the depositors
know the true asset risk, they are willing to keep their deposits in the bank if it promises

to pay di' at T' = 2. Provided that its expected final net worth is positive, which means
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that the bank will not automatically go bankrupt at T = 2 (LPM,(d5'r/d,) < 1), the bank
indeed offers d7'. Then bank runs do not take place at 7" = 1.

Result 6 If without risk reporting only the riskiest types of banks offer a return on deposits
which is accepted by the depositors, risk reporting may help to prevent this adverse selection.
Provided that LPMy(dy'r/dy) < 1 also less risky types of banks offer a return, d3, that

prevents a bank run and does not automatically lead to bank insolvency at T = 2.

Proof: For less risky types of banks it holds that LPM,(dy'r/dy) < LPM;(d$r/d;) <
LPM,(dS*r/dy|dS) and LPMy(dpr/dy) < LPMy(dS*r/dy) < LPMy(dS*r/dy|dS*) where d <
dg.1® If d is sufficiently low, LPMy(d5'r/dy) < LPMy(dS'r/dy) = 1 so that the bank
promises di' in case of risk reporting whereas it does not offer a change in dy without risk

reporting. 0

To sum up, risk reporting may reduce the banks’ risk exposure (or reduce the possibility
of bank runs), but also raise the risk exposure of certain types of banks (or increase the
possibility of bank runs on these types). Which of these effects actually occurs depends on
the benchmark scenario and hence on the parameters of the model. An increase in risk can
only be observed if without risk reporting there exists a pooling equilibrium and the bank
is rather risky. The impact of the return on deposits agreed upon at 7' = 0 can be seen
in Result 4. If dj = d3, there exists a pooling equilibrium in the game between bank and
depositors. But even if d§ # dj such an equilibrium may be observed depending on the

other parameters.

Result 7 Risk reporting may lead to an increase in risk of already rather risky types of
banks. This effect is the more likely,

a) the less risk averse the depositors,

b) the lower the return on assets at T =1 (per invested dollar),

c) the higher the a priori probability of quite low asset risk,

d) the smaller the difference between the highest and the lowest level of asset risk.

18 See proof of Result 5, p. 25. Since the depositors’ posterior beliefs do no longer equal their prior

beliefs we explicitly refer to the posterior beliefs. LPM;(dg*r/dy|dS*), i = 1,2, symbolises the
expected Lower Partial Moment i based on the a posteriori probabilities, p(6|d$*).
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Proof: See appendix A.8, p. 26.

The parameters mentioned in a), b), and c) influence the return on deposits, d3, which
is necessary to prevent a bank run in case of no risk disclosure. The lower this return, the
more likely it is that less risky types of banks may also be able to offer d thus gaining a

positive expected net worth at 7" = 2. Therefore, a pooling equilibrium becomes more likely.

Depositors who are not so much risk averse require a rather low risk premium. As a
consequence, the critical return on deposits, d3, is quite low. As an example, take the data
from Tables 2 and 3 and substitute the utility function by u(d;) = —2d;> +23.76d,, i = 1, 2,
which shows lower absolute risk aversion. Then pooling equilibria exist in both examples
with d§ = 1.4691 and d§ = 1.5797, respectively.

According to (2) a quite low return on assets in period 7' = 1, r, implies c. p. a rather low
level of the debt-to-equity ratio. Therefore, the return on assets critical for bank solvency,
RF | is rather low as well. The lower r, the lower is R*, the higher is the depositors’ expected
utility of waiting until 7" = 2, and finally the lower is the critical return on deposits that

prevents a bank run.!'”

If a priori the probability of low asset risk is high and accordingly the probability of high
asset risk is low, the depositors expect ex ante rather low asset risk. Therefore, the return
on deposits that is critical for waiting until 7" = 2 is not that high. The examples in Tables
1, 2, and 3, which differ in p(0), thus leading to different equilibria, support this statement.

The argument behind d) is somewhat different: The true asset risk of a bank, LPM,(-)
and LPM,(-), usually deviates from the depositors’ prior beliefs, LPM,(-) and LPMy(-).
Therefore, dj, which is based on the prior beliefs, is different from d*, which is calculated
knowing asset risk. The smaller the difference between highest and lowest possible values
of LPM;(-) and LPM,(-), the smaller is c.p. the possible deviation of low asset risk from
prior beliefs. As a consequence, d does not differ very much from d7* so that a pooling

equilibrium in the scenario without risk reporting is more plausible.

So far we have analysed how insolvency risk of certain types of banks in case of risk
reporting differs from insolvency risk if these banks do not report on their risk. We have
shown that ex post a bank’s risk exposure may be higher with risk reporting than without

risk reporting. Additionally we can identify conditions under which the ez ante risk exposure

19 Notice that the impact of a change of d; on the kind of equilibrium in the scenario without risk

reporting is not clear. It can easily be shown that a rise in d; increases the expected utility of
waiting until 7" = 2. But at the same time it increases the utility of withdrawing the deposits at
T = 1 so that it is not clear whether the bank has to raise the return on deposits at T = 2, d», to
prevent a bank run.
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may increase. As a necessary condition, a pooling equilibrium must exist when the bank

does not report on its risk.

Result 8 Provided that without risk reporting a bank offers the same return on deposits
irrespective of its asset risk (pooling equilibrium), the risk exposure can a priori be higher

with risk reporting than without risk reporting. This ex ante increase in risk is the more

likely,

a) the higher the a priori probability of rather high asset risk,

b) the higher (smaller) the difference between the risk exposure with risk reporting and
the risk exposure without risk reporting if the bank is rather risky (riskless) without

risk reporting.

Proof: See appendix A.9, p. 27.

A priori risk reporting leads to an increase in insolvency risk compared to the scenario
without risk reporting if it is ex ante expected that the risk increasing effect on risky types
of banks more than compensates the risk decreasing effect on quite riskless types of banks.
Two factors are important for this result: firstly, the a priori probabilities of the possible
types of banks, and secondly, the differences between asset risk with risk reporting and asset
risk without risk reporting of the different types of banks. If the probability of rather risky
types is high or the difference between asset risk with risk reporting and asset risk without
risk reporting is high (small) if the bank is rather risky (riskless) without risk reporting, it
is more likely that ex ante expected shortfall and target semivariance are higher with risk
reporting. The impact of the second factor becomes clear if we only allow for two possible
types of banks: a risky bank and a riskless bank.? In case of risk reporting the risky bank
becomes even more risky whereas the riskless bank still bears no risk. Regardless of the a
priori probabilities of both types of banks, we observe an increase in the risk exposure due

to risk reporting.

6 Conclusion

In this paper the impact of a bank’s risk reporting on the equilibium behaviour of the bank

and its depositors has been analysed. We have shown that risk reporting may not only

20 Cordella and Levy Yeyati (1998) refer to this special case when they state that the ex ante probability

of bank insolvency increases.
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lead to a decrease but also to a rise in the bank’s risk exposure. A final evaluation of risk
reporting depends on which of the different equilibria in the benchmark scenario actually
occurs. If the lack of risk disclosure leads to adverse selection because only in case of high
asset risk a bank is active in the market for deposits, risk reporting may help to overcome
this problem. However, in case of a pooling equilibrium which means that an “average”
return on deposits is contracted irrespective of asset risk, risk reporting increases risk in
situations with already high asset risk and decreases it in situations which are quite riskless.
We have identified conditions under which a pooling equilibrium is more likely so that by
the introduction of risk reporting “the bank is ‘taxed’ during hard times and ‘rewarded’
during good times” (Cordella and Levy Yeyati, 1998, p. 125). Moreover, ex ante expected

shortfall and target semivariance may be higher in case of risk reporting.

Our conclusions confirm some of the results of Cordella and Levy Yeyati (1998) even
though the analytical frameworks differ. We do not assume a uniform or other special dis-
tribution over asset returns, thus using risk measures that are independent of the underlying
distribution function. Besides, more than two possible values of asset risk are considered.
Instead of looking at the investment decisions of risk neutral potential debtholders, whom
Cordella and Levy Yeyati (1998) call depositors, we have analysed the withdrawal decisions
of risk averse depositors. Thus we gain additional insight into the impact of the depositors’
prior beliefs and their risk aversion. Unlike Cordella and Levy Yeyati (1998) we have shown
that even in case of risk reporting depositors and bank may not agree on a return on deposits

so that risk-based bank runs are possible.

Referring to the theory of deposit contracts and bank runs we model not only the se-
quential game between bank and depositors, as Cordella and Levy Yeyati (1998) do, but
also the simultaneous game between depositors. To our knowledge this is the first paper
that analyses the effects of risk disclosure and takes into account the characteristics of de-
posit contracts. In this paper, we restrict ourselves to a scenario in which the game between
depositors is characterised by dominant strategies. However, a simple change in the as-
sumption on the level of equity would lead to a different game between depositors. For
example, we may assume that equity is so low that the bank becomes illiquid provided that
a certain fraction of deposits is withdrawn. Then a depositor’s withdrawal decision does
not only depend on his information (or expectation) about asset risk but also on his beliefs
concerning the other depositors’ behaviour. In addition to information-based bank runs,
panic runs will occur. Nevertheless, the effects of risk reporting are quite similar to the ones
described above. The opposite case, in which equity is so high that the bank does not go
into liquidation even if all deposits are withdrawn, shows some different results. E.g., not

only total, but also partial bank runs may be observed. A detailed description of this case
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goes far beyond the scope of this paper and will be presented somewhere else.

As another possible extension the bank might be allowed to influence risk by changing
the distribution over asset returns. In our model, nature and not the bank chooses asset
risk. So the analysis is concentrated on the part of a bank’s risk that cannot be hedged by
the bank, e. g. because it is influenced by macroeconomic factors. If the bank chooses asset
risk, moral hazard instead of quality uncertainty is analysed in the scenario without risk

reporting. However, this will not be discussed here any more but left for future research.
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A Appendix

A.1 The Depositors’ Expected Utility of the Return on Deposits at T = 2

Using integration by parts n times, the expected utility of the return on deposits at 7" = 2

can be transformed as follows:

ol (mfunt)]
:/UR u(R?)dF(R) /Rju(dQ)dF(R)

= [n (r%) F(m]Rk - " Pyt (B%) ir v a1 - FRY) (st )

= u(dy) — ﬁ/ORk u® <Rd1> dFM(R)

r

= u(dy) — %u“)(dQ)FM(R’“) + <%>2 /ORk u® (RC?) dF?I(R) (step 2)
= u(dy) — %u(l)(dQ)Fm(Rk) + <%>2u<2>(d2)F[2}(Rk) - (%)3 /ORk u® (R%) dFPI(R)
(step 3)

(step n)

For LPM;(R*) = i!F)(R¥) and n > 1 it follows
d 1
E in { dy, R— = u(dy) L (20 04 Loy (RE
(oo} )] vt £ (-4) wonuosce

+< ‘f})n/omu( <R‘f}>dF (R)

and finally for a utility function u(-) with n — 1 derivatives it holds that

E{u <min{d2,R%}>} u(dy) +Z;< r) ) (dy) LPM;(R").
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A.2 The Bank’s Fxpected Final Net Worth

EV(ds,w)] = E [max {0, RO-wip - w)dzD}]

— max {0, /RR (3(1 - w)%D . w)d2D> dF(R)}

— max {0, (1— w)%D }:(R — R’“)dF(R)}

— max {0, (1- w)%D [RF(R) — FI(R) — RkF(R)];}

— max {0, (1— w)%D (R — FUY(R) — R* + FU(RF)] }

_ { (1- w)%D(E[R] ~ R LPM(RY) L w<l,
0 w=1.

A.3  Proof of Result 1

If the bank offers a return dy with A™(dy) > 0, (5) is fulfilled so that w = ¢. Because of (6)
and (10) the bank does not offer more than dj', which ist defined by A™(d}") = 0.

However, the bank offers d3* only if E[V (d5*,t)] > E[V (dy,1)] = 0. If the depositors were
risk neutral, the last inequality would always be fulfilled. A™(d}") = 0 is then equivalent to

d
A7 — —LPMy(R*) —d;, =0 < LPM;(R*)=R*—r.
T

so that inserting into (9) leads to

E[V(d,t)] = (1— t)%D(E[R] — RF + LPM,(R"))
= (1 -2 (B[R] - )

> 0.

In this paper, the depositors are by assumption risk averse. A™(d5") = 0 may be rewritten

as
rou(dy) —u(d))  dyu®(dp)
LPM,(RF) = ——2 2 + —— 2L PM,(RF
W)= @y T e M)
so that
d; rou(dP) —u(dy)  dy u®(dy)
EV(d},t)]=(1—t)—D| E[R] — RF + ——-2 — 22 [,PMy (R
Vo] =1 — 0% (Bl - k4 T IO A E Lpa
>0 forv a3t >dy <0 for vLPMz(-)>0
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If the depositors are risk averse, the expected net worth at T" = 2 is not generally positive.
The critical return, d7, is higher than in case of risk neutral depositors due to the required
risk premium. The higher the absolute risk aversion, i.e. the higher —u® (d3") /u™ (d3*), the
more likely it is that E[V (d}',t)] = 0.

E[V(dy,t)] = 0 is equivalent to LPMy(dy'r/dy) = 1: From

dg”<%,

E[R] = /ORRdF(R) = RF(R) — FU(R) = R — LPM,(R),

_ dm
LPMy(R) =1, and 0< LPM, (;—T> <1

) =

it follows that

d d
EV(dy,t)]=0 < E[R=="_1PM (2]
dy dy
LPM,(R) — LPM, (“%")
A 1= = dlr
R-%
& 1=LPM, <M> , (17)
dy
and
dm
EV(d™6)]>0 < 1> LPM, (;—T> . (18)
1

Moreover, it holds:

dm
LPM, <§—T> = LPMy(R) =1 and E[V(d},1)] =0.

1

Rd
= —+
If dy = d} is not changed due to LPMy(d5'r/dy) = 1, (7) und (8) describe the depositors’

reactions. |

A.4  Proof of Result 2

The first part of the proof is similar to the proof of Result 1: If the bank offers a return d$
which fulfills A°(dg, p(#)) > 0, it holds that w = ¢t. Because of (10) and (12) the bank does
not offer more than d3, which is defined by A°(dS,p(f)) = 0. According to (16), d3 will be
offered only if E[V (d$,t)] > 0. This condition is equivalent to LPMy(d5r/dy) < 1 (see (18)).
If LPMy(dSr/dy) <1 Y0 € O, each type of bank offers d§ so that p(d3|0) =1V € ©.
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With this the conditions of a perfect Bayesan equilibrium are fulfilled.?! It holds that
E[V(d5,w)] > E[V(dy,w)] VO € O,dy € D,dy # df
where w symbolises the depositors equilibrium behaviour (see Result 2), and
A®(d3, p(0d3)) = A°(d3, p(0)) = 0

because from p(d5|0) =1 V6 € O it follows

o o)
POE) = = ety ~ "

JjEO

Finally, various out-of-equilibrium beliefs support the pooling equilibrium. In case of passive
conjectures??, prior beliefs are retained, p(f|dy # d3) = p(f), so that it is never optimal for
the bank to deviate from the equilibrium. The critical value for waiting until 7" = 2 is still
dj.

1 if 0=,

0 else.

p(9|d2 # dg) = {

also supports the equilibrium return on deposits, d3. The depositors believe that if a bank
chooses an out-of-equilibrium return on deposits, it is always the most risky bank, i.e.
LPM,(-) is at maximum. Because of (10) such a bank may want to reduce ds to d;. As the
depositors would withdraw their deposits (w = 1) and E[V (dy, 1|0)] = 0 < E[V (d3, t|0)], it

is not optimal for the bank to deviate from the pooling equilibrium with d. O

A.5 Proof of Result 3

According to (16) a bank does not offer d3 if E[V(d3,t)] = 0. This condition is equivalent
to LPMy(dyr/dy) = 1 (see proof of Result 1). If E[V(dS,t)] = 0 holds for at least one (but
not for all) # € O, the banks with the lowest values of LPM;(-) will not offer d$ because
E[V(d$,t)] increases in LPM,(-). Since the inequalities in (16) do not hold, such type of
bank leaves dy # d5 unchanged.?® Only rather risky banks offer d5.

The possibility of partial pooling and lemon equilibria are proved with the help of two

numerical examples. Table 2, p. 33, shows partial pooling (or partial adverse selection) with

2L See Fudenberg and Tirole (1991), pp. 325 f.
22 See Rasmusen (2001), p. 142.
2 If dy = dg, we have another pooling equilibrium. See Result 4, p. 14.
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an equilibrium return of d* = 1.6590, which is contracted only in case of middle or high risk.
The depositors update their beliefs accordingly. A lemon equilibrium is presented in Table
3, p- 34. Only the riskiest bank offers the critical return on deposits, d5* = 1.9770, which is
based on the depositors’ posterior beliefs, p(61|d$*) = p(f|d$*) = 0 and p(63]ds*) = 1.

From p(0|d$*) = 1 it follows*

LPM;(dg*r /dy|dg") =) p(0]ds") LPM;(dg'r /dy|0) = LPM;(d3'r/dy|B), i=0,1,2
0co
so that 0 = A°(ds*, p(0]ds*)) = A™(dS*|A) and finally dS* = d. If, however, LPMy(dyr/d,|0)
=1, d" is not even paid by the riskiest bank (see Result 1).

If d§* = dj, no type of bank would change the return on deposits. Therefore, p(d3*|0) =
1V0 € O and finally p(0|ds*) = p(f) (see proof of Result 2). From A°(dS,p(d)) = 0,
dy* > dS, and (12) it follows that A°(dS*,p(f)) > 0. According to (13) and (14) it holds
that w(dy > d§) =t and w(ds < d3) = 1 and thus — for LPMy(d3*r/d;) < 1 (see (10)) —
E[V(dS*,w)] < E[V(dg,w)] where dy € [d3, d5*]. Therefore, a (perfect Bayesian) equilibrium

with d$* = d} does not exist. O

A.6  Proof of Result j

If A°(d3,p(0)) = 0, (13) is fulfilled for dy = d so that w = ¢t. If LPM,(d%r/d;) is so low
that E[V (d3,t)] = 0, E[V(dS,t)] = E[V(dy < d3,1)] = E[V(dy > db,t)] according to (10),
(13), (14), and (15). If LPM,(dyr/dy) is rather high so that E[V (dy,t)] > 0, E[V (ds,t)] >
E[V(dy > dy, w)] according to (10) and (13). Moreover, it holds that E[V (d5,t)] > E[V (dy <
dy, w)] because of (14) and (15). Irrespective of # and thus of LPM,(d4r/d;), the condition

for offering a new return on deposits, d$ # d3, in (16) is not fulfilled.

Each type of banks sends the same signal so that p(#) = p(0|d3) and A°(d3,p(0|d3)) =
A°(d5,p(0)) = 0 where dy = di. In equilibrium it holds that w(dy > d%) =t and w(dy <
dy) = 1. For the various out-of-equilibrium beliefs see the proof of Result 2, p. 23. U

A.7 Proof of Result 5

According to (5), (6), (11), (12), and with LPM;,(-) > 0 the following relationship holds:

LPM, (‘;27") > LPM, (‘;27") A LPM, <‘i§r> > LPM, <‘i§r>

1 1 1 1

= A™(d3) < A®(dg, p()) = 0

24 LPM;(dS*r/dy|dS*) symbolises the a posteriori expected Lower Partial Moment i for R = dg*r/d,
whereas LPM;(d3*r/dy|0) equals the Lower Partial Moment ¢ for R = d$*r/d; if € is realised.
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= dy > dy where d3' is defined by A™(dy') =0

—~ LPM, <%> > LPM, <‘;2T> A LPM, <%> > LPM, <‘§T> .

1 1 1 1

Accordingly, for rather low LPM;(dSr/dy) and LPM;(dSr/dy) it holds

LPM, <d2r> < LPM, (‘;27) A LPM, <d27"> < LPM, <%>

d1 1 dl 1

am £ qm £
= em (20 <emy (25) A e (220 < v, (225

d, d; d; d;

A.8 Proof of Result 7

A pooling equilibrium exists if LPMy(d3r/d,) < 1 V6 € © where dj is defined by A°(d3, p())
= 0. Because of OLPMy(dSr/dy)/0dS = OF (dsr/dy)/ddS = f(dsr/dy)r/dy > 0,2 a pooling

equilibrium is the more likely, the lower d.
a) The less risk averse the depositors, the lower is the required risk premium and hence d3.%
b) From (12) (with dy = dS), LPMy(d3r/dy) > 0,

8A"(dg,p(9)) dy / dg?” D dg’l“ D dg?”
—— = ——u'(d LPM, — LPM
87" r2 “ ( 2) d1 0 d1 ! d1

.

>0
d? , dSr dsr ~ dsr
—u"(d§ LPM, — LPM. 27
o gui(dz) | LPM | 2 ()| <07 and
>0
OA°(d2, p(h OA°(d2, p(
Ao(dg,p(e)) — (azlgp( )) ddg + (;Tp( )) d?" — 0

follows d d3/dr > 0. Besides, it holds that OR*/0r = d3/d; > 0.

¢) From ), o p(0) = 1 follows dp(f) = —>_,_;dp(f). For analytical convenience let us sup-
pose there exists two possible values of §: §; and @ with LPM, (d3r/d,|0,) < LPM,(d3r/d,|0),
and LPMQ(dgT/dlwl) S LPMQ(dgT/d1|§) With dp(g)/dp(gl) = —1 it holds that

dLPM, (%" o Jor |
<d1 ) — LPM, <di" 91> — LPM, (di 9> <0,

dp(6h) 1
25 f(R) is the density function of R with 0 < fR) < 1 for R € [0, R].
26 For the implications of depositors’ risk aversion see also the proof of Result 1, p. 22.
2T Due to LPMy(RF) = F(R*) > 0 and f(R*) > 0, LPM,(RF) is strictly increasing and convex in
R = R*. 1t follows that R*FII(RF) > 2FPI(R*) and thus R¥ LPM, (R*) > LPM,(R"). If, however,
LPMy(R*) = 0, a change of r does not influence A°(d3, p(6)), which is equal to u(d3) — u(dy).

1
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aLPm, (%) & o
N7 _PM, [ 2200, ) — LPM, | =2-10) < 0.
dp(6y) ’ < d 1) ? ( dy > -

If p(6y) increases, LPM,(-) and possibly LPM,(-) decrease so that A°(dS, p()) rises and dS

is reduced according to (12).

1

d) If a pooling equilibrium does not exist, LPMy(d3r/d;) < 1 is not fullfilled by types of
banks with rather low LPM, (dSr/d,), i.e. LPM, (dSr/d,) which are lower than LPM, (d2r /d;).2
The difference between the possible values of LPM;(-) — for a given target — decreases if
low (high) values of LPM,(-) increase (decrease). If we again take to possible values of
0, 0, < 0, it holds that dLPM;(d9r/d:|0) = —(p(6:)/p(0)) dLPM;(dSr/dy|6y), i = 1,2. If
the difference LPM;(dSr/dy|0) — LPM;(dSr/d,|6;) should be reduced, holding LPM;(dSr /d;)
constant, LPM;(d3r/d,|01), i = 1,2, must increase. If LPM;(dSr/d,|0) is sufficiently high,
LPMy(dSr/di]6h) < 1 so that a pooling equilibrium exists. O

A.9 Proof of Result 8

With no risk reporting the ex ante expected shortfall and target semivariance are defined as
LPM;(dr/dy) = Y ocoP(O)LPM;(dSr/dy|0), i = 1,2, in case of a pooling equilibrium. With
risk reporting they are defined as 3", p(0) LPM;(dy (0)r/d1|0), i = 1,2.2° Let § € © be
defined by d§(9) < d§ for # < # and d*(#) > d3 for § > 0. A bank’s risk exposure with risk

reporting is ex ante higher than without risk reporting if

S n(0) |LPM, <d2 (6)r 9) — LPM, (d“ 9) >0
9cO L Ul dy .
[ ds(6)r dsr| \1
0) |LPM; | =2 o) — LPM; | =16
< %p( ) i ( d > (dl )
- <0 because dJt (0)<d3
[ ds(6)r dsr| \1 _
) |LPM; | 2 0| — LPM; [ 2|6 0 =1,2. 19
30| (“£2) (% )> =12 (19)
>0 becaus:;dg" (0)>d3

It is more likely that this inequality is fulfilled, a) if p(f) with 6 > @ is high (and accordingly
p(#) with @ < 6 is very small), b) if the difference in the last brackets is high and the absolute

value of the difference in the first brackets is small. O

28 See proof of Result 3, p. 24.
29 Here we use d3*(6) instead of dJ* to emphasise that dJ* depends on the realised and published values
of LPM;(R*) und LPM>(R*) and thus on the value of § whereas d$ is the same for all 6.
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Figure 1: Time Structure

T=0 Shareholders found a bank.
Deposits are issued.

Total funds are invested in risky assets.

T=1 Nature chooses asset risk.
Bank learns asset risk and expected asset return.
Bank reports on asset risk* and expected asset return, and decides
whether to change the return on deposits at T = 2.
Each depositor learns his type.
Depositors of type 1 withdraw their deposits. Depositors of type 2
decide whether to withdraw their deposits or not. Bank liquidates

assets to repay deposits.

T=2 Returns of the assets not yet liquidated are realised.
Depositors still waiting receive promised returns in case of bank sol-

vency and the liquidation value of assets in case of insolvency.

In case of solvency, shareholders get the final net worth of the bank.

Note: * The report on asset risk is left out in the scenario without risk reporting.
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Figure 2: Scenario with Pooling Equilibria

uy]

Table 1: Example of Pooling Equilibria

Types of banks 1 2 3
6 0.5 1 2.4
p(0) = p(0|d3) 0.4 0.3 0.3
ds 1.2629

E[V (d3,t)] 4.0106 6.7013  14.3667
LPM,(RF) 0.0392 0.1004 0.2746
LPM,(R*) 0.0052 0.0300 0.2102

Note: R is uniformly distributed over [E[R] —0.50, E(R) + 0.560]; E[R] = 1.2; R =24;r = 1;
dy = 1.1; D = 100; C = 10; t = 0.6; u(d;) = —2d;* + 10.824d;, i = 1,2. According to their
prior beliefs, the depositors decide to wait if all types of banks promise to pay dg = 1.2629 in
T = 2. Since the expected final net worth, E[V(d3,t)], is positive for each type, all types send
the same signal offering d$ so that p(6|d3) = p(6).

prior beliefs.
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Table 2: Example of Partial Pooling

Types of banks 1 2 3 2 3
0 0.5 1 2.4 1 2.4
p(0) 0.05 0.25 0.7

p(6ds") 0.2632  0.7368
a3 1.6128 1.6590
E[V(d3™,1)] 0 12029 7.9938| 0.8095  7.2906
LPM, (R¥) 0.2662  0.2935  0.4478 | 0.3266  0.4739
LPM,(RF) 0.0917  0.1499 04377 | 0.1760  0.4765

Note: R is uniformly distributed over [E[R] —0.50, E(R) + 0.560]; E[R] = 1.2; R =24;r = 1;
dy = 1.1; d} < 1.6128; D = 100; C = 10; t = 0.6; u(d;) = —2d;* + 10.824d;, i = 1,2. In the
central column we find the data based on the a priori probabilities, p(#). The depositors would
wait until 7" = 2 if all types of banks offered d = 1.6128. As the expected final net worth of
type 1, E[V(d$,t)], would be equal to zero, type 1 does not offer d3. Based on the a posteriori
probabilities, p(6;]|d3*) = 0, p(#2|d5*) = 0.25/0.95 = 0.2632 and p(#5]d$*) = 0.7/0.95 = 0.7368
(see right column), the critical return is d3* = 1.6590. Type 2 and 3 offer this return because
their expected final net worth, E[V (d3*,t)], is still positive.
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Table 3: Example of Lemon Equilibria

Types of banks 1 2 3 2 3 3
0 0.5 1 2.4 1 2.4 2.4
p(6) 0.05 0.05 0.9

p(0]d3™) 0.0526  0.9474 1
45 1.8434 1.9173 1.9770
E[V(d3™,1)] 0 00129 4.8074 0 39568 | 3.1322
LPM,(RF) 04758 04761 05851 | 0.5430  0.6329 | 0.6866
LPM,(RF) 02472 0.3097  0.6537 | 0.3782  0.7355 | 0.8310

Note: R is uniformly distributed over [E[R] —0.50, E(R) + 0.560]; E[R] = 1.2; R =24;r = 1;
dy = 1.1; d} < 1.8434; D = 100; C = 10; t = 0.6; u(d;) = —2d;* + 10.824d;, i = 1,2. In the
second column we find the data based on the a priori probabilities, p(#). The depositors would
wait until 7" = 2 if all types of banks offered d = 1.8434. As the expected final net worth of
type 1, E[V(d$,t)], would be equal to zero, type 1 does not offer d3. Based on the a posteriori
probabilities in the third column the critical return would be 1.9173, which, however, would
not be offered by type 2 because its expected final net worth would be equal to zero as well.
In equilibrium (see forth column) it holds that p(61|d3*) = p(#2|d$*) = 0, p(A3|ds*) = 1 and
ds* = 1.9770.

Table 4: Equilibria in the Game between Bank and Depositors without Risk Reporting

Expected final net worth of the bank, E[V(d3,1)],

Critical return d for each type positive only for some types positive

< dj partial pooling or lemon

equilibrium (Result 3) if

dy* # d
=d pooling equilibrium (Results 2 and 4)
> df partial pooling or lemon

equilibrium (Result 3)

Note: d$ symbolises the return on deposits that is based on the depositors’ prior beliefs and is
just high enough to prevent a bank run at 7" = 1. It is implicitly defined by A°(d$, p(#)) = 0.
dy represents the return on deposits initially agreed upon whereas d$* stands for the return
on deposits in equilibrium. d$* is implicitly defined by A°(d$*,p(0|d$*)) = 0. From d§ > dj
(together with d3* > d3) it follows that d$* > dy. Therefore, the condition d$* # d} is fulfilled
in the last row of the table.
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