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ABSTRACT 

 

 

Investors’ attitudes towards risk and the resulting impact on prices in financial 

markets are determined by changes in their wealth. This wealth effect, however, 

provides a poor explanation of the observed distribution of futures prices for 

reasonable values of the degree of risk aversion. This paper shows that illiquidity in 

the futures market, modeled endogenously as a trading cost, increases the strength of 

the wealth effect for the same degree of risk aversion. The resulting distribution of 

futures prices presents a more pronounced left fat tail and left skewness than would 

have been implied by the wealth effect alone.  
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INTRODUCTION 

Although illiquidity is recognized in practice as a major disrupting factor in the 

functioning of financial markets, its theoretical foundation remains in doubt. This paper 

proposes a model, with a very general utility framework, in which illiquidity results from the 

inability of economic agents to share risk at no cost and takes the form of an endogenous 

trading cost whose importance increases as financial markets come under stress. Illiquidity 

tends to strengthen the wealth effect, which has traditionally been used to explain the 

behaviour of risk prices under stress. The wealth effect is the mechanism through which 

changes in the investors’ wealth affect their attitude towards risk and thus prices on the 

financial markets. This mechanism provides a poor explanation (see Jackwerth and Brown 

(2001)) of the mean, skewness and kurtosis of the observed distribution of prices especially in 

the derivatives market for reasonable values of the degree of risk aversion. This paper shows 

that illiquidity in the futures market, modeled endogenously as a trading cost, increases the 

strength of the wealth effect by acting as a risk lever. Investors become more risk averse as 

their wealth falls and therefore ask for ever-higher risk premiums to become the counterparty 

to a futures contract. With illiquidity, for any decline in wealth, there is more risk to be shared 

and less willingness to assume it without a lower price and thus a higher return. The increase 

in futures risk premiums, reflecting greater illiquidity trading costs, is associated with a more 

pronounced left fat tail and left skewness in the distribution of futures prices in a market 

dominated by short hedgers than would have been implied by the wealth effect alone. Risk 

transfers are further studied using comparative statics. 

Futures contracts are standardized instruments offered on organized markets. 

Investors can use them to hedge their risk stemming from changes in the price of the good 

underlying the contract, while speculators are willing to assume those risks in anticipation of 

a possible gain. The risks from having a position in the underlying asset are shared through 

the futures market as well as other derivatives markets. For example, a fast food chain can 

buy pork belly futures to hedge against the risk of an increase in the price of pork bellies, 
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while a pork producer would sell pork belly futures. If both the producer and the fast food 

chain need to hedge the same amount for the same period, they could enter into a forward 

agreement, mimicking the futures contract available on organized markets, to exchange pork 

bellies at a predetermined forward price. Their risk is then defined as perfectly shared and 

there is no pressure on the futures market assuming that their wealth is solely determined by 

the price of pork. However, should they have different quantities to hedge, there will be a 

pressure1 on the futures price so as to attract speculators willing to become the counterparty to 

the excess hedging supply or demand for futures. Hedging pressures are therefore transfers of 

risks for a price. 

Risk transfers become costly when we relax in the investor’s optimisation problem 

the assumption that an investor can initiate a trade of a non-negligible size without having an 

impact on the market price. This creates endogenously an illiquidity trading cost that 

increases with the size of the futures trade and by, approximately, the volatility in the 

underlying spot price. Furthermore, adding illiquidity to the wealth effect changes the 

distribution of futures prices. 

Illiquidity trading costs make the distribution of futures prices fatter in the left tail, 

left skewed and dependent on the size of futures trades. If futures prices are above their 

expected value (or arbitrage price), as implied mainly by the conditions prevailing on the 

underlying good market, then speculators have little wealth at risk and are quite willing to 

bear that risk cheaply. By contrast, as the underlying good or the rest of their portfolio loses 

some value, speculators tend to ask for increasing premiums and the distribution of futures 

prices becomes thicker on the left for low futures prices than on the right for high futures 

prices. The illiquidity trading cost tends to aggravate the distortions produced by the wealth 

effect on the distribution of futures prices.  

One might argue that Keynes (1930) thoroughly described how speculators become 

more fearful as they lose their wealth and flee the futures market. However, his analysis 

                                                 
1 This assumes that there are limits to the ability to arbitrage 
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neglected the enhancing effect of illiquidity.  This paper shows that as frightened speculators 

leave the market these become increasingly illiquid.  

The paper is organized as follows. Section I briefly reviews the illiquidity and risk 

sharing literatures. Section II presents the theoretical model under two central assumptions: (i) 

futures prices are independent from the quantity traded; and (ii) markets are incomplete.  The 

model is further developed, by relaxing the first assumption in Section III and the second 

assumption in Section IV.  Section V draws on the model findings to analyse the risk sharing 

mechanism behind the wealth effect and changes in illiquidity. 

 

I. PREVIOUS WORK ON ILLIQUIDITY AND RISK SHARING 

Illiquidity2 is derived endogenously within the microstructure literature generally in 

the form of a bid-ask spread or transaction costs, stemming mainly from inventory costs 

introduced by Demsetz (1968), market order processing costs from Garman (1976) and 

insider trading from Glosten and Milgrom (1985). These models assume the presence of 

market makers matching the supply and demand who establish bid-ask spreads to cover their 

operating costs. O’Hara (1994) provides a comprehensive overview of this field. These 

matching models, however, are of limited use to the vast array of equilibrium and arbitrage 

models used for pricing and risk management.  

Equilibrium or arbitrage models, such as in Ericsson and Renault (2001), take 

illiquidity as given in the form of an exogenous trading cost and study how it impacts the 

decisions of investors. Acharya and Pedersen (2002) for example study a four beta CAPM 

with persistent illiquidity and study its impact on the investors’ decision-making. Illiquidity 

and risk sharing were until now separate lines of research. 

Risk sharing is concerned with the possibility for economic agents to exchange risks 

through financial markets, using derivatives as risk transfer vehicles. In the asset pricing 

literature, Dumas (1989) shows that when investors have different degrees of risk aversion 

                                                 
2 See Galy (2002) for a more comprehensive review of this field 
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and suffer a common risk, they must share the aggregate risk. Wang (1994) considers 

investors that are heterogeneous both in their investment opportunities and access to 

information. In the absence of information asymmetries, according to Wang (1994), selling by 

an investor increases the volume and decreases the price, increasing its expected return, as the 

asset’s expected payoff has not changed. This leads other investors to buy the asset so that its 

price may remain independent of its volume. Risk sharing becomes of interest only if 

investors cannot correctly assess the asset’s expected payoff. This happens when investors 

have heterogeneous beliefs as in Detemple and Murphy (1994) or asymmetries of information 

as in Wang (1994). Risk sharing will change depending on the source of the friction, such as 

non-insurable labor income shocks in Constantinides and Duffie (1996), and frictions or 

constraints imposed on the investors, such as the lower bound imposed by Grossman and 

Zhou (1996) on the hedger’s wealth which forces them to hedge so as to respect it. This 

sharing of risks creates a demand for derivatives to shift risk between those who are willing to 

take on more of risk for a premium and those who must reduce their risk. Risk sharing comes 

under the broad denomination of ‘portfolio insurance demand’ in the derivatives literature.  

In the derivatives literature, risk sharing among heterogeneous investors therefore 

creates a role for derivatives as risk transfer vehicles. Grossman and Zhou (1996) studied such 

an exchange of risk in complete markets and continuous time where one type of hedger is 

constrained not too lose a given fraction of his initial wealth, creating an asymmetric need to 

share risk and hence a demand for put options. Franke, Stapleton and Subrahmanyam (1998) 

show that the degree to which investors face non-hedgeable background risks, such as labor 

income shocks or shocks to non traded assets, determines the exchange of risks. Finally, Bates 

(2001) considers the sharing of crash risk or negative stock market jumps and shows that it 

partially explains why stock options tend to overestimate volatility and the risk of a price 

jump.  

When markets are incomplete, i.e. traders do not have enough uncorrelated assets to 

hedge all risk sources (Harrison and Pliska (1983) and Duffie and Huang (1985)), the sharing 

of risks is hampered. In such a context, the supply and demand of financial assets is 
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imperfectly elastic as pointed out for example by Leisen (2002), which implies therefore a 

transfer of risk when trading. Leisen pointed out that derivatives would not be traded if the 

price of their underlying asset at the next trading date is assumed locally normal and markets 

are incomplete. Magill and Quinzii (1995) following Keynes (1930) define market 

incompleteness as a failure of the market to coordinate activities as all futures contract trades 

cannot be made at a predetermined price due to frictions. This creates a demand for cash to 

hedge against price uncertainty in addition to futures. The portfolio insurance demand 

literature extends this result to show that it creates a demand for options.  

This paper shows how illiquidity trading costs arise endogenously in an equilibrium 

model from the inability to share risk freely. This trading cost strengthens the impact of the 

wealth effect for a given degree of risk aversion result is further generalized to a broad class 

of utilities in this paper allowing for the wealth effect and thereby altering the distribution of 

futures prices. 

 

II. MODEL 

I assume an infinite horizon model with two groups of utility maximizing agents, G 

producers of commodities and N speculators. Each agent maximizes the utility he expects 

from consuming the profits tπ  generated by the sale of a good decided at time  but realized 

only at time . Therefore, the agent faces a problem3 each period whereby his cash flows are 

decided now but realized only t  periods in the future. The utility function 

0

t

=1 ∞+ ,...,),( jV jtπ  is assumed to be increasing and concave in the investor’s wealth. The 

, , producers and speculators may have different degrees of risk 

aversion.  

NG + Gi = ,..., NG +,...,1

                                                 
3 If preferences are separable, it is straightforward to see that the model reverts to a classical 
maximization of terminal wealth. The fact that the maximization is repeated every period does not 
change anything as no wealth is accumulated. 
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The hedger produces at time  the quantity  of goods that will be sold at time  at 

an uncertain price  that he hedges by selling the quantity  of futures contracts at a 

price of . Producing the good costs him  at time  but these costs are only realized 

at time  so that the cash flow from the production of goods decided at time 0  occurs t  

periods later. The investor’s profits at time  equal the revenues generated by the sale of the 

consumption good minus the costs of production and the cost of hedging the production good 

by taking short futures contracts positions at time 0 and reversing the position at time t. The 

profits at time t are therefore given by equation (1): 

0 0y t

)( 0ypt 0f

0F

t

)( 0yc

t

0

0 0 0 0 0( ) ( ) (t t )tp y y c y f F Fπ = − + −        (1) 

The investor chooses the number  of futures contracts so as to maximize his 

concave utility V

0f

∞=+ ,...,1),( jjtπ . I will use the notation V  for the ith derivative with 

respect to profits of the utility function 

)(i
t

∞=+( t ,...,1), jjV π  at time t . The first derivative 

represents the marginal value of an additional dollar for the investor, the second represents the 

utility’s curvature. It can be interpreted as a proxy for risk as can be seen in the Arrow-Pratt 

measure of risk aversion as well as other global measures of risk.  

Differentiating ∞=+ ,...,1),( jV jtπ  with respect to  under the constraint of 

equation (1) yields equation (2). The futures’ price is such that the expected value at time 0  

of a dollar measured in terms of marginal utility  invested in the futures contract has a 

zero return 

0f

)1(
0 tVE

( )0)) 00 =− FF(()1(
0 FVE t .  

          (2) (1)
0 0( )t tE V F F− = 0

A simple transformation 0)())(( 00,00
)1(

0
)1(

0 =−=− FFMEFFVVE tttt  shows that 

equation (2) can be rewritten in terms of the marginal rate of substitution 

)1(
0

)1(
0, VVM tt = between time 0  and time . The marginal rate of substitution gives the 

price at which the agent would be willing to wait and consume later. It is a classic result that 

t
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if the investor is allowed to trade t period risk free bonds with an interest of , then the 

marginal rate of substitution will equal the risk free discount rate 

tr

)10,0 tt rME = 1( + . The 

marginal rate of substitution is therefore widely interpreted as the investor’s personal risky 

discount rate )~1(10, tt rM += . Equivalently, it is the cash flow deflator used for present 

valuation but it may be risky as it depends on the investor’s preferences 

0

tF −

The futures demand and supply , thereafter referred to as the futures demand, is 

found by differentiating equation (2) as a function of the futures price  at time . Hedgers 

offer futures contracts to speculators who have the same utility maximization problem, but are 

long in the future contract and have no position in the underlying asset. The resulting futures 

demand is given by the following equation (3): 

0f

0F

)( 0
)2(

0

)1(
0

0 FFVE
VE

f
tt

t

−
=         (3) 

The futures demand is a function of the investor’s utility. It is an increasing function of the 

marginal value of profits when hedging and an inverse function of the futures risk premium 

.  0tF F−

To better understand the demand for futures contracts, I re-express it to introduce the 

familiar Arrow-Pratt risk aversion. Using the definition of the conditional expectation, 

conditional covariance4 and that of local risk aversion )1()2(
ttt VV−=ρ , the demand for 

futures contracts (3) becomes a function of the error in predicting the futures price 

: )()( 0
)1(

0
)1(

0 tttt
F
t FFVFFVEe −−−=

( )F
ttttt

t

eCovFFVEE
VE

f
,)( 00

)1(
00

)1(
0

0 ρρ −−
=       (4) 

The demand is, as before, an increasing function of the marginal value of profits for the 

investor . It is also an inverse function of the futures price change . This )1(
0VE 0F

                                                 
4  )()()(),( 0000 tttttt YEXEYXEYXCov −=
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relation depends on whether markets are in equilibrium or not. When the futures price is in 

equilibrium, defined by equation (2), the first element of the denominator disappears from the 

equilibrium futures demand in equation (4). The second element of the denominator is the 

conditional covariance of the error in predicting the futures contract value with the Arrow-

Pratt measure of risk aversion. The more the investor’s risk aversion is correlated with the 

error in pricing , the higher the hedging demand. In other words, the more fearful the 

investor becomes of pricing errors, the less he is willing to use futures contracts. Therefore, 

fear of mispricing is an additional factor driving the demand for futures. These risks are 

shared when investors trade either to enhance or reduce their exposure. As will be seen in the 

next section, trading creates endogenously illiquidity in the futures market in the form of a 

trading cost. 

F
te

 

III. ILLIQUIDITY AS AN ENDOGENOUS TRADING COST 

In this section, we relax the assumption that agents are able to buy or sell any quantity 

of futures contracts while leaving the futures price unchanged. Friend and Blume (1975) 

define such markets as illiquid. This changes two things, first the futures price is no longer 

assumed to be independent of the quantity traded, and secondly each producer initiates a trade 

thereby creating a price pressure on the futures market that will attract speculators, defined as 

having no position in the futures contract’s underlying asset5.  

 

A. MODEL WITH LARGE TRADES 

Relaxing the assumption that the futures price is independent of the quantity traded in 

the producer’s optimization problem changes the futures price. Compared to equation (2) 

where this assumption was imposed, an additional trading cost appears endogenously. It 

                                                 
5 See the proof of proposition 2 to see why this condition must hold. 
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equals the quantity of futures traded multiplied by the expected change in the futures price 

created by the trade.  

0
)(

)(
0

0)1(
000

)1(
0 =








∂

−∂
+−

f
FF

VEfFFVE t
ttt      (5) 

This trading cost ( )00
)1(

00 )( fFFVEf tt ∂−∂=TC  is paid by the producer who sells 

futures for hedging purposes to the speculator buying the futures as a compensation for the 

sharing in the producer’s risk.  

 

B. DERIVING THE TRADING COST 

The derivative 0( )tF F f∂ − ∂ 0  in equation (5) of the trading cost is unknown. It can 

be determined directly from equation (2) where it was assumed implicitly to be too small to 

matter. This assumes that trading a large amount of futures contracts does not change the 

shape of the demand curve. Differentiating equation (2) as a function of the quantity of 

futures traded , I find that the expected value 0f 00
)1(

0 )( fFFVE tt ∂−∂  of the differential in 

terms of marginal utility equals the expected value in terms of risk of a deviation in the 

futures price ( ) .  2
0F Ft −

( ) ( 2
0

)2(
0

2
0

)1(
0

0

0)1(
0 )()(

)(
FFVEFFVE

f
FF

VE ttttt
t

t −=−−=
∂

−∂
ρ )   (6) 

where risk is measured by the Arrow Pratt measure of risk aversion. Note that the risk of a 

change in the futures price was shown before to be a determinant of the futures demand.  

Having derived the trading cost, it is straightforward to find the price equation of the 

futures contract by introducing equation (6) into (5). This modified price equation of the 

futures contract equals the original equation (2) plus an additional trading cost 

( )2
0

)1(
00 )( FFVEfTC ttt −= ρ  on the right that lowers the futures price. 

( ) 0)()( 2
0

)1(
000

)1(
0 =−−− FFVEfFFVE ttttt ρ       (7) 
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The demand and supply of futures contracts must now be aggregated to find the futures price 

in the aggregate equilibrium in the presence of illiquidity trading costs. 

 

C. EQUILIBRIUM IN AN ILLIQUID FUTURES MARKET 

To find the futures price in the aggregate equilibrium, we must aggregate the supply 

of and demand for futures across investors assuming a single price will clear the futures 

market. The G producers initiate the futures contracts and are therefore the ones paying a 

trading cost to speculators, who do not have a position in the futures contract’s underlying 

asset. Equation (7) which prices the futures contract can therefore be rewritten to introduce a 

logical operator  to separate hedging trades from speculative trades. iI

( ) 0)()( 2
0

)1(
,,0,00

)1(
,0 =−−− FFVEfIFFVE tititiitit ρ      (8) 

1=iI  if   is a producer (hedger) and 0 otherwise (speculator) i

Using the market clearing condition 0,
1

0
N G

i
i

f
+

=

=∑  on the futures on equation (8), we find the 

equation (9) pricing futures contracts in the presence of illiquidity.  

( 0)()(
1

2
0

)1(
,,0,00

1

)1(
,0 =−−−







 ∑∑
=

+

=

G

i
tititit

GN

i
it FFVEfFFVE ρ )      (9) 

The first term on the left of equation (9) is the futures contract’s value in the market and the 

second term on the left is the aggregate illiquidity trading cost that must paid by hedgers in 

order for speculators to accept such trades. The illiquidity trading cost depends, among other 

things, on the hedgers’ trades and their degree of risk aversion. Equation (9) can be rewritten 

as equation (10) to show how illiquidity and risk shifting are related using the definition of 

the conditional covariance to separate the futures risk premium from the aggregate marginal 

utility. 

( )










−
+


















−

−=−

∑

∑

∑

∑
+

=

=
+

=

+

=

GN

i
it

G

i
tititi

GN

i
it

t

GN

i
it

t

VE

FFVEf

VE

FFVCov
FFE

1

)1(
,0

1

2
0

)1(
,,0,0

1

)1(
,0

0
1

)1(
,0

00

)(,
)(

ρ
  (10) 
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The futures risk premium or drift )( 00 FFE t − on the left of equation (9) depends on the 

futures contract’s ability to reduce or increase the investors’ risk in the futures market. This is 

measured in equation (9) by the covariance on the right side of the 

equation between the futures risk premium or drift 









−∑

+

=
0

1

)1(
, , FFV t

GN

i
it

0FFt

0Cov

−  and the marginal value of a dollar 

for investors in that market . To shift the financial risk of producing with futures 

contracts, the producers must pay a trading cost (last element on the right of equation (10)) 

dependent on the size of the futures trades and approximately (see proof 3) the expected 

variance of the futures price for the producers adjusted for their expected degree of risk 

aversion.  

∑
+

=

GN

i
tV

1
i
)1(

,

 

D. FUTURES PRICE DISTRIBUTION 

Introducing illiquidity makes the futures price distribution at time t  fatter on the 

left tail, more left skewed and dependent on the size of trades by strengthening the wealth 

effect.  

tF

As was seen in equations (9) and (10) and proof 3, illiquidity creates an endogenous 

trading cost that increases with the size of the futures trades, the expected degree of risk 

aversion and a measure related to the expected variance of the futures price. Illiquidity 

increases the strength of the wealth effect, which determines how shocks to producers affect 

the futures price, and thereby determines its distribution. Following a negative shock to the 

producer’s profit, the wealth effect states that the producer’s degree of risk aversion it ,ρ  

increases (see proof 1), as he is assumed to feel more vulnerable and is said to have a 

prudential motive (V ). This triggers a fall in the futures price as it becomes more 

desirable to short it for hedging and consequently an increase in the futures expected risk 

premium  and the marginal value of his profits V .  

0)3(
, ≤it

)0F(0 FE t − )1(
,it
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This, in turn, increases the illiquidity trading cost in the aggregate equilibrium 

 as its components, the degree of risk aversion(∑
=

−=
G

i
tititi FFVEfTC

1

2
0

)1(
,,0,0 )(ρ ) it ,ρ , 

marginal value of profits V  and especially the element ( , all increase. This last 

element is the square of the fall in the futures price resulting from the wealth effect, so that for 

every fall in the investor’s profits, the trading cost increases by even more.  The illiquidity 

trading cost increases therefore the strength of the wealth effect. 

)1(
,it

2
0 )FFt −

Illiquidity pushes therefore the futures price distribution to the left. As for every 

shock affecting the producer’s profits, the futures price is lower than it would be without 

illiquidity. This assumes that in practice producers, selling futures to hedge, initiate a majority 

of trades. The futures price distribution is therefore more skewed and fatter on the left tail, 

than would be the case with only the wealth effect.  

The properties of skewness and left fat tail can be deduced mathematically from 

equation (10). Skewness is a measure of the bias in the expectation and is a scaled function of 

the third moment of the futures price distribution . From equation (10), 

the third moment is:  

3
003 )( tFEF −=µ

( )
3

1

2
0

)1(
,,0,00

1

)1(
,0

3

1

)1(
,03 )(, 








−−








−
















= ∑∑∑

=

+

=

−
+

=

G

i
tititit

GN

i
it

GN

i
it FFVEfFFVCovVE ρµ  (11) 

The futures price distribution is skewed 03 ≠µ , as the elements on the right of equation (11) 

are different from zero. Intuitively, the distribution must be skewed to the left as the futures 

price today trades at a large discount to its expected price tFEF 00 <  under pressure from 

hedgers. The sign of the conditional covariance on the right hand side can be determined by 

deriving the marginal value of profits as a function of the futures premium conditional on the 

information available at time 0, all else equal. 

i

GN

i
itt

GN

i
it fVFFV ,0

1

)2(
,0

1

)1(
, )( ∑∑

+

=

+

=

−=−∂







∂       (12) 

 14



The conditional covariance is therefore positive, as the utility is concave V , and this 

more so for the G producers selling futures contracts. The trading cost is positive and the 

entire right side of equation (11) is therefore negative. The futures price distribution is 

therefore skewed to the left . 

0)2(
, ≤it

tFEF 00 <

 In addition to being skewed, the distribution is fatter on the left tail as described by 

the fourth moment of the futures distribution . This corresponds to 

equation (11) with the powers changed from three to four. The fourth moment is, as the third, 

different from zero implying that the futures price distribution has a fat tail. The fourth 

moment is larger the higher the futures risk premium implying that the distribution has a fatter 

left tail. 

4
004 )( tFEF −=µ

The futures price distribution is left skewed with a fat left tail even if markets are 

liquid. These properties of the futures price distribution are enhanced by the presence of 

illiquidity. In essence, a Keynesian run (investors become increasingly fearful as their losses 

accumulate and leave the market) out of the futures market takes the liquidity out of the 

futures market. This implies in practice that one needs a lower degree of risk aversion to 

obtain these properties of the futures price distribution. These results depend however on the 

assumption that markets are incomplete. 

 

IV. WHEN ILLIQUIDITY TRADING COSTS CEASE TO MATTER: 

CONVERGENCE TO COMPLETE MARKETS 

In this section, we show that illiquidity is a property of incomplete markets, which 

disappears as competing hedging products complete the financial markets, assuming that 

there are an infinite number of risk sources as well as an infinite number of assets available to 

complete the market.  

Illiquidity trading costs are relevant only if the supply and demand curves are not 

perfectly elastic. As can be seen in equation (5), the derivative 00 )( fFFt ∂−∂ would then 
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equal zero by definition and the trading cost would disappear. If a perfect substitute could be 

found by a replication or arbitrage strategy, then it is a classic result that the supply and 

demand must be perfectly elastic, as investors would switch from one good to the other 

whenever one market would come under trading pressure. The futures price would therefore 

be independent of the quantity traded. Illiquidity trading costs would then disappear, as the 

derivative 0( )tF F f∂ − ∂ 0  within the definition of the trading cost 

( 0
)1( )( FFtt −∂

N

)000 fVEfTC ∂=

f

 equals zero. A futures market is therefore liquid when the 

supply and demand curves are perfectly elastic. Equivalently, there is no perfect substitute for 

the futures contract that could replicate its payoff, as would be the case by taking opposite 

positions on a call and a put with the same strike price on the same underlying commodity. 

0lim
N 0f F

→∞
∂ ∂ =

This ignores however that other substitute products are available for hedging. 

Proposition 1, derived in the appendix, shows that, as more options are available for hedging 

or speculation, the elasticity of the supply and demand curves increases as for every increase 

in the futures price, on can buy other hedging products as imperfect substitutes.  

 

Proposition 1: Convergence to market completeness 

Let  be the number of options available in the market. Let the number of risk 

sources that influence spot prices be infinite. For a given futures price  and 

quantity of futures : 

0F

0

a) The futures’ supply and demand curves become more elastic as more options 

become available for hedging. Equivalently, the slope increases as the price and 

quantity are taken as given. 

b) The slope of the futures curve is indeterminate when there is an infinite source of 

options to hedge an infinite source of risks. 

 Indeterminate 
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The slopes of the supply and demand curves become indeterminate as illustrated in figure 1, 

in the limit when markets are complete, and the supply and demand become impervious to 

futures price changes. This translates graphically below into curves that increasingly flatten as 

the markets become more complete. 

0F

0f

Supply

Demand

Fu
tu

re
s P

ric
e

Number of Futures Contracts

Increasing elasticity 
as markets become 
more completePerfect Elasticity 

when markets 
are complete

 

Figure 1: Irrelevance of supply and demand when markets are complete 

As the markets become more complete, the supply and demand become more elastic so that trading has 

an increasingly smaller impact on the futures price. 

 

The illiquidity trading cost declines as financial markets become more complete and 

sharing risk becomes less relevant. The concept of risk sharing and consecutive illiquidity 

trading costs are studied using comparative statics in the next section. 

 

V. RISK SHARING PROPOSITIONS 

In this section, I study risk sharing or changes in the attitude towards risk that 

generate prices changes through the wealth effect and the illiquidity trading costs. The 

attitude towards risk will be measured by the degree of risk aversion and prudence. Risk 

aversion )1(
,

)2(
,, ititit VV−=ρ  measures the investor’s willingness to take risks when faced 

with uncertain profits. It measures the curvature of the utility as a function of profits and is 
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positive, as the utility is assumed concave as a function of profits. The more curved it is, the 

more certain outcomes are preferred to uncertain ones. The degree of prudence 

)2(
,

)3(
,, ititit VVp −=

                              

, sometimes called precaution, measures the investor’s willingness to bear 

risk as his profits or wealth changes (see proof 1).  

 When the utility function is specified, risk sharing can be studied by comparing 

graphically how the payoff of a derivative varies as a function of the underlying asset price. If 

the graph is nonlinear and high for low states, that is these states are more expensive, then 

there is clearly an excess demand to hedge against these states, or so argues the portfolio 

insurance literature. As the utility function remains unspecified beyond the hypothesis that it 

is an increasing and concave function of profits, I use comparative statics6 to see how risk 

alters both the price of and demand for futures contracts.  

As we have seen, producers have risks from production, which cannot be hedged 

away and must be shared with the market. This implies a wealth effect and illiquidity trading 

costs. In this section, we will show in proposition 2 that this risk sharing puts pressure on the 

futures risk premium implying that they will tend to decrease (contango) or increase (normal 

backwardation) over time7, with investors willing to buy or sell depending on their level of 

prudence. We will show in proposition 3 that this problem becomes acute in a high-risk 

situation such as a crash as there is an ever-increasing demand for hedging as hedgers find 

themselves more at risk. If investors in the futures market have non-separable preferences, in 

that the utility derived from tomorrow’s profits cannot be separated from today’s, then futures 

contracts become more expensive as investors care about how risk is resolved, thereby 

reducing the use of futures contracts (proposition 4). 

 

                   
6 See Varian (1992) for examples of the comparative statics method 
7 Keynes (1930) first developed the argument that the unwillingness to bear risk creates contango or 
normal backwardation in the futures prices. 
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A. COMPENSATION FOR RISK SHARING 

Proposition 2, derived in the appendix, shows that risk transfers create an upward or 

downward trend for futures prices known as contango and normal backwardation 

respectively.  

 

Proposition 2: Relation between prudential and risk tolerant motive with 

contango or normal backwardation 

⇒≤⇒≥ 000 fFFt ( ) 0)(, 0
)1()1(

0 ≤− tttV FFVVpCov
t

 for a speculator 

⇒≥⇒≤ 000 fFFt ( ) 0)(, 0
)1()1(

0 ≥− tttV FFVVpCov
t

 for a hedger 

Under normal backwardation, futures prices tend to increase over time . Speculators 

are then willing to share the hedgers’ risk 

0tF F≥

00 ≤f  as they are compensated by an increase in 

the futures price. This implies that a speculator becomes less prudent for every dollar invested 

as the value of the futures contract increases ( ) 0(, 0
)1()1(

0 ttV FVVp
t

) ≤− tF

t

Cov . Hedgers 

push the futures price down by selling futures at time 0  and increase it at time  by reversing 

their positions thus offering a risk premium to speculators.  

Under contango, futures prices tend to decrease 0tF F≤ . Hedgers are more than 

willing to use futures contracts to hedge , as they can transfer risk to speculators and 

receive a risk premium for it. They become more prudent for every dollar invested as the 

value of the futures contract increases 

00 ≥f

( ) 0),)1( ≥− ttV FVp
t

( 0
)1(

t FV0Cov . This unlikely 

situation  is possible, but selling pressures from hedgers will push the futures price 

down immediately. Therefore, one cannot have a downward trend or contango without 

allowing for an excess of long hedgers in the model to push the current futures price upwards.   

0tF F≤
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B. NONLINEAR RISK SHARING 

Proposition 2 shows that contango or normal backwardation means that investors are 

willing to share risk if they are compensated. The result that risk sharing creates a pressure on 

futures prices was confirmed in section III and is further studied in the proposition 3.  

Proposition 3, derived in the appendix, shows how the supply and demand of futures 

contracts changes with the degree of risk aversion. 

Proposition 3: Risk aversion mechanism 

      { } { }(1)
0 0 ( )

t
t tV

sign f sign E V F Fρ∂ ∂ = − −0   

      { } { })( 0
)1(

0
2

0
2 FFVEsignfsign ttVV tt

−=∂∂ ρρ  

When futures prices increase over time  (normal backwardation), hedgers sell futures 

contracts as their degree of risk aversion increases 

0FFt ≥

{ } 00 ≥∂∂
tVfsign ρ  (as a result of the 

wealth effect for example) and this at a decreasing rate { } 02 ≤
tV0

2 ∂∂ fsign ρ . Hence, the 

price pressure on the futures markets will be strongest, when hedgers feel the most vulnerable 

or equivalently have a high degree of risk aversion. In the language of Keynes (1930), 

proposition 3 states that speculators are frightened and flee the market during a crisis. As was 

shown in section III.D, the futures market becomes less liquid at an increasingly fast pace 

through the illiquidity trading cost. 

  

 

 

C. DYNAMIC RISK SHARING 

The attitude towards risk has been described by the degree of risk aversion to 

uncertainty in profits at a given point in time and is therefore static. In the next section, we 

add a temporal or dynamic dimension to the attitude towards risk by introducing non-

separability in the investor’s preferences. The investor then cares both about uncertainty in his 

profits and how this uncertainty resolves itself or equivalently its dynamics. This dynamic 
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component of the attitude towards risk is shown to effectively increase the investor’s degree 

of risk aversion, limiting his willingness to share risk, and therefore strengthening the wealth 

effect.  

Non-separability of preferences increases the investor’s degree of risk aversion by 

introducing a dynamic component (proposition 4.1) and decreases the investor’s willingness 

to shift risk through time (proposition 4.3). The difference between the degree of risk aversion 

under non-separable preferences and that under separable preferences is a function of the 

elasticity of the marginal rate of substitution through time σ  and the parameter α , which 

controls the degree to which preferences are non-separable8 (proposition 4.4). Therefore, the 

speculator requires a greater compensation for entering into a futures contract, as the expected 

value of the futures contract at time  is greater. The contract becomes more expensive 

through these two mechanisms so that the demand for futures contracts falls. 

t

The attitude towards risk is said to be dynamic if the investors’ preferences are not an 

additive sum of his instantaneous utility. Until now, the investors were assumed to have 

preferences that were additive or separable so that each period the producer took decisions 

independently of how it would impact his future instantaneous utility and hence future 

decisions. The investor’s utility function ∞=+ ,...,1),( jjtV π  under non-separable 

preferences is chosen as a nonlinear sum of instantaneous utilities (13) that reverts to the 

linear or separable case used before when the parameter 0=α .  The investor’s attitude 

towards time is given by the parameter β  discounting his instantaneous utilities, while his 

time horizon is given by the parameter T . 1

α

πβ
−

=
+ 



∑=

1

0

1

)(
T

i
it

i
t UV         (13) 

The non-separability of the utility of profits across time introduces a dynamic to risk, 

the investor taking into account how a risky investment will evolve. For example, managers 

face great anxiety or elation today when undertaking a high-risk project, as they are uncertain 

                                                 
8 If 0=α  the utility function reverts to one of separable preferences. 
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not only how it will work out today and tomorrow, but how the risk of that project will evolve 

as time goes by. The degree of risk aversion under separable preferences corresponds 

therefore to the one based on the instantaneous utility (2) (1)
tU tU Uρ = − t , while that under 

non-separable preferences is based on the function of the instantaneous utilities 

(2) (1)
tV t tV Vρ = − . 

Proposition 4.1, proved in the annex, shows that the degree to which preferences are 

non-separable influences the demand for futures contracts. 

 

Proposition 4.1: Dynamic risk 

00 ≤
∂
∂

α
f  if  the futures price is decreasing and 0FFt ≤ ( ) 12 )1( −+≥ θαρV  

From proposition 2, we know that this proposition concerns a hedger selling futures 

contracts as he can both shift his risk and be compensated for it. An increase in dynamic risk, 

controlled by the parameter α , decreases hedging demand for a given level of the 

instantaneous degree of risk aversion ( ) 12 (1 )
tVρ α θ −≥ +  where θ  is the difference between 

the degree of risk aversion under non-separable and separable preferences. An increase in the 

importance of dynamic risk controlled by α  increases the importance of past and future 

profits on the utility ∞=j+ ,...,1),( jtV π  derived by the investor from his profits. The hedger 

uses fewer futures contracts in the presence of dynamic risk even though he can shift his risk 

and be compensated for it.  

Proposition 4.2 shows that introducing a dynamic component to the investor’s 

attitude towards risk increases the investor’s degree of risk aversion, thereby strengthening 

the wealth effect. 

Proposition 4.2: Relation between static and dynamic risk aversions measures 

+=
tt UV ρρ  

∑
=

+

1

0

)1(

)(
T

i
it

i

t

U

U

πβ

α
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The Arrow-Pratt measure of risk aversion (2) (1)
tV t tV Vρ = −  of the utility with non-separable 

preferences exceeds the one with separable preferences (2) (1)
tU tU Uρ = − t  by a factor 

(1) 1 1
t tU V αα − −  that is positive if 0≥α  and V j( , 1,..., ) 0t jπ + = ∞ ≥ . When preferences are 

separable 0α = , the two measures of risks are equal. Under these conditions, assuming 

separable preferences, and 0 1α< ≤  for the utility to be concave (see proof 2), is therefore 

equivalent to increasing the investor’s degree of risk aversion. Note that risk aversion under 

separable preferences can be said to be dynamic as it depends on future utilities or states, 

while the traditional measure is static. 

 Proposition 4.3 shows that the increase in risk aversion comes from an unwillingness 

to shift risk through time when preferences are non-separable. 

 

Proposition 4.3: Relation between the elasticity of the marginal rate of 

substitution through time tσ  (EMRST) and the parameter α : 

∑
−=

∂
∂

=

=
+

1

0

)1(

)(
)1(

ln
ln

T

i
it

i

tt

t

t
t

U

UV

πβ

π
α

π
σ  

The elasticity of the marginal rate of substitution through time (EMRST) is a decreasing 

function of the parameter α . The more the investor is concerned about risk resolution, the 

less he is willing to shift risk through time and hence the higher the risk premium he will 

require to enter into a futures contract. 

The previous set of propositions showed that risk sharing becomes more difficult 

when introducing a dynamic component to risk. Proposition 4.4 summarizes these results. 

 

Proposition 4.4: Relation between the degrees of absolute risk aversion 
t

A
Vρ , 

t

A
Uρ  

and the EMRST σ  

α
ασρρ
−

+=
1

A
U

A
V tt
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Proposition 4.4 follows directly from propositions 4.2 and 4.3 It shows the dynamic risk 

aversion )1()2(
ttt

A
V VV

t
πρ −= difference with the static risk aversion )1()2(

ttt
A

U UU
t

πρ −= is 

a function of the EMRST (σ ) and the parameter α . When the parameter α  increases, the 

ratio αα −1  increases and the EMRST σ decreases (proposition 4.2). The net impact is 

more clearly seen in proposition 4.2, where the premium increases linearly with α . Hence, 

dynamic risk as measured by α  increases the investor’s degree of risk aversion by decreasing 

his willingness to shift risk through time. This dynamic component disappears when 

preferences are separable 0α = . 
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CONCLUSION 

 

Risk sharing creates an illiquidity trading cost that strengthens the wealth effect. This 

in turn increases the fatness of the left tail and skewness of the distribution of futures prices 

beyond that created by the wealth effect. Risk sharing becomes increasingly difficult as 

investors find themselves at risk, creating a pressure on the futures prices for speculators to 

accept the risk unloaded by hedgers. In the presence of non-separable preferences, this 

mechanism is again strengthened as investors worry about how uncertainty will resolve itself. 

This paper suggests that illiquidity is proxied by volatility and that Delta-Vega hedged 

portfolios should therefore empirically be less sensitive to market pressures, a point left for 

future research. 
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ANNEX 

 

Proposition 1: Convergence to market completeness 

Let  be the number of options available in the market. Let the number of risk sources that 

influence spot prices be infinite. For a given futures price  and quantity of futures : 

N

0F 0f

a) The futures’ supply and demand curves become more elastic as more options become 

available for hedging. Equivalently, the slope increases as the price and quantity are taken as 

given. 

b) The slope of the futures curve is indeterminate when there is an infinite source of options 

to hedge an infinite source of risks. 

0 0lim
N

f F
→∞

∂ ∂ =  Indeterminate 

 

Proof proposition 1: 

To prove proposition 1, we must first find the slope of the futures demand. The 

demand function (3) is derived as a function of the futures price. 

( )
(2) (2) (1) (3) (2)

0 0 0 0 0 0 0 0 0 0
2(2)

0 0 0

( ( )) ( ( )

( )
t t t t t t t

t t

f f E V E V F F E V f E V F F E V
F E V F F

∂ − − − − −
=

∂ −

)
  (14) 

(3) => 
( )

(1) (2) (1) (3) (2)
0 0 0 0 0 0 0 0

2(2)
0 0 0

( ) ( ( )

( )
t t t t t t

t t

f E V E V E V f E V F F E V
F E V F F

∂ − − − −
=

∂ −

)
   (15) 

(3) =>
( )

(2) (3) (2)
0 0 0 0 0 0

0 (2)
0 0 0

( )
( )

t t t

t t

tf E V f E V F F E Vf
F E V F F

∂ − − − +
=

∂ −
     (16) 

(3)
20 0

0 (2)
0 0

( )
( )

t t

t t

0

0

f E V F Ff
F E V F

∂ −
= −

∂ − F
                    (17) 

using equation (40), derived as part of the proof of proposition 2, we have therefore: 

(2)
0 0

0 (2)
0 0

2
( )

t

t t

f E Vf
F E V F

∂
= −

∂ − 0F
        (18) 
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( )
(1) (2)

0 0 0
2(2)

0 0 0

2
( )

t t

t t

f E V E V
F E V F F

∂
= −

∂ −
                    (19) 

The hedger has now a portfolio of N derivatives on the underlying product giving each a 

different payoff  at maturity. The sources of uncertainty on the spot price remain 

unspecified and may be multiple. 

),..)(( ti ypg

∑−−−−=
=

N

i
tiittNt ypgfFFfycyyp

1
,00000, ),..)(()()()(π     (20) 

 

Proof of proposition 1.a): 

if  we just showed that   0)( 0 ≤− FFt )()(0 ,
)2(

1,
)2(

NttNtt VV ππ ≥≥ +

Using equation (19), the inverse of the price elasticity is 

0 0

(2)
1 0 0 0
, 0 (2)

0 0 0 0

2
( )

t
F f

t t

f F E VF
F f E V F F

ε − ∂
= = −

∂ −
      (21) 

using the equilibrium demand of futures (3) into (21)  

0 0

(2)
1 0 0 0
, 0 0 (1)

0 0 0

2 t
F f

t

f F EF f
F f E V

ε − ∂
= = −

∂
V

       (22) 

Note the more options are available, the more the utility changes so that the demand for 

futures contracts, which depends on the first and second degree of the utility, changes as other 

options become available. For a given price and quantity of futures in equilibrium at time 0, I 

find how the elasticity of the curve changes. The introduction of a new good changes not only 

the shape of the curve as measured by elasticity but its position. 

0 0

0 0

1 (1) (2)
, 0 , 0 ,1

(1) (2)1
0 , 1 0 ,,

( ) (
( ) (

F f t t N t t NN

t t N t t NF f N

E V E V
E V E V

ε π π
π πε

−

++
−

+

= 1)
)

)π

      (23) 

As the utility is concave V , then V  is a decreasing function so that: 0(.))2( ≤t (.))1(
t

          (24) (1) (1)
0 , 1 0 ,( ) (t t N t t NE V E Vπ + ≥
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Whether  or 0)( 0 ≥− FFt 0)( 0 ≤− FFt

(2)
1 0 (t t NE Vπ π≤

, I show in the demonstration of proposition 1.1 that 

it implies:  (2)
0 ,t tE V + , )( )N

So that equation (23) => 1
1
,

1

1
,

00

00 ≤
−

+

−

NfF

NfF

ε

ε
=>

NfFNfF 0000 ,1, εε ≥
+

     (25) 

The elasticity of the supply or demand curve increases the more options are available. 

 

Proof of proposition 1.b): 

To find the limit of the slope given by equation (19), I first find the limit of the denominator 

and numerator. The proofs of propositions 1.a and 1.b assume the price and quantity to be 

constant. 

1) I find the limit of the denominator (2)
0 , 1 0lim ( ( ))( ) ?t t N tN

E V F Fπ +→∞
− =  

(2) (2)
0 , 1 0 0 , 0, 1 1( ( ))( ) ( ( (.)))( )t t N t t t N N N tE V F F E V f g F Fπ π+ +− = − − 0+  

• if  then by proposition 2, V , then V  is a decreasing 

function of profits so that, supposing that the additional options are used for 

speculating (

0)( 0 ≤− FFt

,0

0)3( ≤t (.))2(
t

0(.)11 ≤+Ng+Nf ): 

   0)()( ,
)2(

1,
)2( ≤≤+ NttNtt VV ππ

=>  (2)
0 , 1lim ( ( ))t t NN

E V π +→∞
= −∞

and as 0)( 0 ≤− FFt => 

(2) (2)
0 , 1 0 0 , 0( ( ))( ) ( ( ))( ) 0t t N t t t N tE V F F E V F Fπ π+ − ≥ − ≥    (26) 

Hence, the denominator of equation (17) is an increasing function of the number of 

substitute options available for speculating. In the limit, the denominator therefore 

converges to infinity. 

(2)
0 , 1 0lim ( ( ))( )t t N tN

E V F Fπ +→∞
− = ∞       (27) 
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• if  then by proposition 2, V , then V  is an increasing 

function of profits so that, supposing that the additional options are used for hedging 

( ): 

0)( 0 ≥− FFt

(.)11,0 ≥++ NN g

0)3( ≥t (.))2(
t

0f

0)()( ,
)2(

1,
)2( ≤≤+ NttNtt VV ππ   

=>  (2)
0 , 1lim ( ( ))t t NN

E V π +→∞
= −∞

and as 0)( 0 ≥− FFt => 

(2) (2)
0 , 1 0 0 , 0( ( ))( ) ( ( ))( ) 0t t N t t t N tE V F F E V F Fπ π+ − ≤ − ≤    (28) 

Hence, the denominator of equation (17) is a decreasing function of the number of 

substitute options available for hedging. In the limit, the denominator therefore 

converges to zero. 

(2)
0 , 1 0lim ( ( ))( ) 0t t N tN

E V F Fπ +→∞
− =        (29) 

2) I find the limit of the numerator: (1) (2)
0 0lim ?t tN

E V E V
→∞

=  

 If  or , we just showed that: 0)( 0 ≤− FFt 0)( 0 ≥− FFt

0)()( ,
)2(

1,
)2( ≤≤+ NttNtt VV ππ => (2)

0 , 1lim ( ( ))t t NN
E V π +→∞

= −∞

, 1( )) .0t N ID+ + = −∞ =

=>   

 (Indeterminate) (2) (1)
0 , 1 0lim ( ( )) (t t N tN

E V E Vπ π
→∞

Since the utility is concave V  then V  is a decreasing function.  0(.))2( ≤t (.))1(
t

If (  =>  =>   (30) 0)0 ≥− FFt )()(0 ,
)1(

1,
)1(

NttNtt VV ππ ≤≤ +
(1)

0 , 1lim ( ( )) 0t t NN
E V π +→∞

=

If (  =>  =>  (31) 0)0 ≤− FFt )()(0 1,
)1(

,
)1(

+≤≤ NttNtt VV ππ (1)
0 , 1lim ( ( ))t t NN

E V π +→∞
= ∞

Using the results of 1), 2) and equation (19), we have: 

if  => 0)( 0 ≤− FFt
0

0

.lim
N

f ID
F→∞

∂ −∞ ∞
= − =

∂ ∞
      (32) 

if  => 0)( 0 ≥− FFt
0

0

0.( )lim
0N

f ID
F→∞

∂ −∞
= − =

∂
      (33) 
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The slope of the supply or demand curves are therefore indeterminate in the limit. In the limit, 

the two are perfectly elastic or flat so that the quantity and hence the slope cannot be 

determined. 
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Proposition 2: Relation between prudential and risk tolerant motive with contango or 

normal backwardation 

⇒≤⇒≥ 000 fFFt ( (1) (1)
0 0, ( )

t t t tCov p V V F F ) 0− ≤  for a speculator 

⇒≥⇒≤ 000 fFFt ( (1) (1)
0 0, ( )t t t tCov p V V F F ) 0− ≥  for a hedger 

 

Proof of Proposition 2: 

To find the demand for futures contracts, I use the demand for futures (3) and expand 

its denominator using the definition of the covariance. 

( )
(1)

0
0 (1) (1)

0 0 0 0 0( ) , (
t

t t t t t t

E Vf
E E V F F Cov V F Fρ ρ

=
− + − )

     (34) 

Using the first order condition of equilibrium (2), the futures demand in equilibrium is 

therefore given by, 

( )
(1)

0
0 (1)

0 0, ( )
equilibrium t

t t t

E Vf
Cov V F Fρ

=
−

       (35) 

Equation (35) shows an investor in equilibrium will hold futures contracts long if his 

degree of risk aversion moves in the same direction as the value of the futures contract and 

short otherwise.  

{ } ({ )}(1)
0 0 0, ( )t t tsign f sign Cov V F Fρ= −      (36) 

Therefore, the producer hedges because the value of the futures contract increases when the 

expected spot price of his goods falls. An investor without a position in the underlying asset is 

less risk averse when the value of the futures contract increases and is therefore willing to act 

as a speculator. 

If the futures prices are increasing (normal backwardation), then as can be seen in 

equation (35) using the result of (36), then the speculator is willing to take a long position. If 

the futures prices are increasing (contango), then as can be seen in equation (35) using the 
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result of (36), then the hedger is willing to take a short position. These results are summarized 

below: 

0 0  tF F f− ≤ ⇒ ≤0 0

0 0

 for a speculator 

0 0  tF F f− ≥ ⇒ ≥  for a hedger 

To find the impact of the prudential motive on risk taking, I derive equation (2) noted 

here (36), pricing the futures contract as a function of the futures price , as a function of 

the futures position 

tF

0f  and then the futures price , I obtain equation (37) and then (38): 0F

0)( 0
)1(

0 =− FFVE tt          (37) 

(2) 2
0 0( )t tE V F F− = 0

t

)

         (38) 

(2) (3) 2
0 0 0 0 02( ) ( ) 0t t t tE V F F E V f F F− + − =       (39) 

Equation (38) can be rewritten in the following manner: 

(2) (3) 2
0 0 0 0 02 ( )( ) ( )t t tE V F F E V f F F− − = −       (40) 

(1) (1) 2
0 0 0 0 02 ( ) (t t t t t t tE V F F f E p V F Fρ ρ− = −       (41) 

2 (1) (1) (1)
0 0 0 0 0(1)2 ( ),t

t t t t t
t

p ( )tf E V Cov V F F V F F
V

ρ
 

= −
 

−      (42) 

From the result of equation (36), equation (42) can only hold if the hedger becomes more 

prudent for every dollar invested as the value of the futures contract increases. Conversely, a 

speculator becomes less prudent for every dollar invested as the value of the futures contract 

increases. 

( )(1) (1)
0 0, ( ) 0t t t tCov p V V F F f− ≥ ≥0 0       (43)  

( )(1) (1)
0 0, ( ) 0t t t tCov p V V F F f− ≤ ≤0 0  

The proposition 2 therefore holds.  
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Proposition 3: Risk aversion mechanism 

{ } { }(1)
0 0 (t tsign f sign E V F Fρ∂ ∂ = − −0 )t   

{ } { }2 2 (1)
0 0 ( )t t t tsign f sign E V F Fρ ρ∂ ∂ = − 0  

 

Proof of Proposition 3:  

Deriving the futures demand (supply) of equation (3) as a function of the second 

derivative of the utility V , I find that: (2)
t

(1) (1)
0 0 0 0

(1) 2
0 0

( ) (
( ( ))

t t

t t t t

)tf E V E V F F
E V F Fρ ρ

∂ − −
=

∂ −
       (44) 

Introducing equation (3) into equation (44), the equation simplifies to: 

2
(1)0 0

0 0(1)
0

(t
t t

f f E V F F
E Vρ

∂
= − −

∂
)t        (45) 

The utility being increasing, it follows therefore that: 

{ } { }(1)
0 0 (t tsign f sign E V F Fρ∂ ∂ = − −0 )t       (46) 

 

Deriving equation (47) as a function of the degree of risk aversion: 

( )( )2(1) (1)2
0 0 00

2 (1)
0 0

2 (
( ( ))

t t t

t t t t
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The utility being increasing, it follows therefore that: 

{ } { }2 2 (1)
0 0 (t t tsign f sign E V F Fρ ρ∂ ∂ = −0 )t       (49) 

Hence, from the results of (46) and (49), proposition 3 is proved. 
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Proposition 4.1: Dynamic risk 

00 ≤
∂
∂

α
f  if  the futures price is decreasing and 0FFt ≤ ( ) 12 (1 )

tVρ α θ −≥ +  

Note that the index for risk aversion now depends on whether we are considering the 

instantaneous utility function U j( ), 1,...,t jπ + = ∞  or the utility function 

∞=+ ,...,1),( jV jtπ . 

 

Proof of Proposition 4.1: 

To find the impact of dynamic risk on the use of futures contracts 0f α∂ ∂ , I must 

first find (1)
tV α∂  and ∂ (2)

tV α∂ ∂ . The intertemporal utility function under non-separable 

preferences is given by equation (50). α  represents the degree to which present and future 

utilities are linked for the investor when taking a decision today. When it equals zero 

preferences are said to be separable as tomorrow’s utility is added to today’s. β  is the 

standard parameter describing the agent’s preference for time and T  is the horizon of the 

investor 
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The utility’s first derivative is given by equation (51) and its second derivative by equation 

(53): 
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1) (1)
tV α∂ ∂ : Deriving the first derivative of the utility (51)as a function of the parameter α  
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2) (2)
tV α∂ ∂ : Deriving the second derivative of the utility (53) as a function of the parameter 
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3) 0f α∂ ∂ : The demand for futures equation given by equation (3) is differentiated as a 

function of the parameter α
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Using equation (71) of proposition 4.4 
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Using equation (68) 01
1
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Hence proposition 4.1 is proved. 
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Proposition 4.3: Relation between the elasticity of the marginal rate of substitution 

through time σ  and the parameter α : 
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Proof of proposition 4.3: 

Using the definition of the utility function from equation (13) it is straightforward to find: 
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Proposition 4.4: Relation between the degrees of absolute risk aversion 
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Proof of proposition 4.4: 

Using the definition of the utility function from equation (13) it is straightforward to find: 
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We can derive therefore the risk aversion for the utility function from these two equations as: 
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Using equation (70), the conclusion of the demonstration follows. Note that: 

ααρρ −
−

+=⇒ 1
1

)1(
ttUV VU

tt
0≥−≡⇒

tt UV ρρθ  if 0α ≥  and  V  0t ≥

tt UVtt VU ρρα α −=−
−

1
1

)1(  )ln()1( )1(
t

UV
t U

V tt

α
ρρ

α
−

−=     (71) 

 39



Minor sets of proofs:  

Proof 1: Risk aversion is an increasing function of profits if V  (prudential motive). 0)3( ≤

2(3) (1) (2)2 (3) (2) (3)
2

(1)2 (1) (1) (1) 0t t t t t t t
t

t t t t t

V V V V V V
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   (72) 

Proof 2: 

Assume that the utility function V
 
defined in equation (13) is positive. The instantaneous 

utility functions U
 
and the utility function V  are assumed to be concave. The second 

derivative of the investor’s utility function 

t

t t

( ))2(
tV  is negative if 10 ≤≤ α . Hence, the 

parameterα  must be bounded between 0 and 1 for the hypothesis that the utility is concave to 

be true. 
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Proof 3: 

I show that the trading cost is a function of the investor’s expected local risk aversion and the 

value of profits and approximately the variance in the futures market. If the futures drift is not 

too great, then the futures price is a good predictor of its value in the future . )(0 tFEF ≈

( ) ( )2
0

)1(
,0

2
0

)1(
,0 )()( ttitttitt FEFVEFFVE −≈− ρρ      (74) 

Using the definition of the expected covariance, the equation (75) becomes: 

( )
( ) ( )( )

(1) 2
0 , 0

(1) 2 (1) 2
0 , 0 0 0 , 0

( )

( ) ( ) , ( )

t t i t

t t i t t t t i t t

E V F F

E V E F E F Cov V F E F

ρ

ρ ρ

− ≈

− + −
    (76) 

Assuming away the conditional covariance on the left side, equation (77) further simplifies to: 
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Therefore, the trading cost is a function for the investor’s expected local risk aversion and the 

value of profits and approximately the variance in the futures market.  
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What does the simplification on the covariance imply? 

I define the shock in the futures variance tε  using the definition of expectations by the 

following equation ( ) tttttt FEFFFEF ε+−== 2
0

2
000 )()()( E−Var . Using this 

definition in equation (79) it becomes:  
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2
00
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2
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Hence removing the covariance is equivalent to assuming that shocks to the variance of 

futures prices have no impact on risk aversion and marginal utility and consequently on the 

futures price.  

 

 41



REFERENCES 

 

Bates D., 2001, The Market for Crash Risk, National Bureau of Economic, Research Working 

Paper 8557. 

Brown D., and J. Jackwerth, 2001, The Pricing Kernel Puzzle: Reconciling Index Option Data 

and Economic Theory, University of Wisconsin at Madison, Working Paper. 

Constantinides, G., and D. Duffie, 1996, Asset Pricing with Heterogeneous Consumers, 

Journal of Political Economy, 104, 219–240. 

Demsetz H., 1968, The Cost of Transacting, Quarterly Journal of Economics, 82, 33-53. 

Detemple J., and S. Murphy, 1994, Intertemporal Asset Pricing with Heterogeneous Beliefs, 

Journal of Economic Theory, 62, 294-320. 

Duffie D., and C. Huang, 1985, Implementing Arrow-Debreu Equilibria by Continuous 

Trading of Few Short-Lived Securities, Econometrica, 53, 1337-1356. 

Dumas B., 1989, Two-Person Dynamic Equilibrium in the Capital Market, Review of 

Financial Studies, 2, 157-188. 

Franke G., Stapleton R., and M. Subrahmanyam, 1998, Who Buys and who Sells Options: 

The Role of Options in an Economy with Background Risk, Journal of Economic 

Theory, 82, 89-109. 

Friend I., and M. Blume, 1975, The Demand for Risky Assets, American Economic Review, 

65(5), 900-922. 

Ericsson J., and O. Renault, 2001, Liquidity and Credit Risk, FAME-International Center for 

Financial Asset Management and Engineering, Research Paper 42. 

Garman M., 1976, Market Microstructure, Journal of Financial Economics, 3, 257-275. 

Grossman S., and Z. Zhou, 1996, Equilibrium Analysis of Portfolio Insurance, Journal of 

Finance, 51, 1379–1403. 

Glosten L. and P. Milgrom, 1985, Bid, Ask, and Transaction Prices in a Specialist Market 

with Heterogeneously Informed Traders, Journal of Financial Economics, 14, 71-100. 

 42



Harrison J., and S. Pliska, 1983, A stochastic Calculus Model of Continuous Trading: 

Complete Markets, Stochastic Processes and their Applications, 15, 313-316. 

O’Hara M., 1994, Market Microstructure Theory, Oxford: Blackwell Publishing. 

Jackwerth J., 2000, Recovering Risk Aversion from Option Prices and Realized Returns, 

Review of Financial Studies, 13, 433-451. 

Keynes J., 1930, A Treatise on Money, Vol. II (McMillan, London). 

Leisen D., 2002, Current Option Pricing Models are Inconsistent with Trade, Working Paper, 

McGill University. 

Magill M., and M. Quinzii, 1996, Theory of incomplete markets, London: MIT Press. 

Varian H., 1992, Intermediate Microeconomic, A Modern Approach, Norton. 

Wang J., 1994, A Model of Competitive Stock Trading Volume, Journal of Political 

Economy, 102, 127-168. 

 43



 44

 


	ILLIQUIDITY AND THE WEALTH EFFECT
	ILLIQUIDITY AND THE WEALTH EFFECT
	
	INTRODUCTION
	I. PREVIOUS WORK ON ILLIQUIDITY AND RISK SHARING
	II. MODEL
	III. ILLIQUIDITY AS AN ENDOGENOUS TRADING COST
	A. MODEL WITH LARGE TRADES
	B. DERIVING THE TRADING COST
	C. EQUILIBRIUM IN AN ILLIQUID FUTURES MARKET
	D. FUTURES PRICE DISTRIBUTION

	IV. WHEN ILLIQUIDITY TRADING COSTS CEASE TO MATTER: CONVERGENCE TO COMPLETE MARKETS
	V. RISK SHARING PROPOSITIONS
	A. COMPENSATION FOR RISK SHARING
	B. NONLINEAR RISK SHARING
	C. DYNAMIC RISK SHARING

	CONCLUSION
	ANNEX
	REFERENCES



