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1 Introduction

A bank which wants to decide whether a credit applicant will get a credit or not has to

assess if the applicant will be able to redeem the credit. Among other criteria, the bank

requires an estimate of the probability that the applicant will default prior to the maturity

of the credit. At this step, a rating of the applicant is a valuable decision support. The

idea of a rating system is to identify criteria which separate the ”good” from the ”bad”

creditors, such as liquidity ratios or ratios concerning the capital structure of a firm. In a

more formal sense a rating corresponds to a guess of the default probability of the credit.

Obviously, the question arises how a bank can identify a sufficient number of selective

criteria and, especially, what selectivity and discriminatory power means in this context.

A particular problem of credit scoring is that defaults and non-defaults are only observed

for a subsample of applicants. In the following sections we try to make a first step to a

rigorous treatment of this subject which is rarely addressed in literature.

Apart from the theoretical attractiveness this issue is of highly practical importance.

This is due to the fact that the Basel Committee on Banking Supervision is working on

a New Capital Accord (Basel II) where default risk adjusted capital requirements shall

be established. In this context ratings and the design of ratings play an important role.

Clearly, the committee wants the banks to identify factors which ”have an ability to

differentiate risk [and] have predictive and discriminatory power” (Banking Committee

on Banking Supervision, 2001, p. 50).

Consequently, in practice banks are forced to regularly redesign their rating systems. The

available data base for this task typically contains only the accepted credit applicants.

Data entries for the rejected credit applicants do often not exist. This leads to a non-

representative data base which may give biased estimates of all relevant parameters if

this censoring is not appropriately handled. To evaluate the new rating system, e.g. by

comparing it with the existing rating system, we would actually need the full data base of

all past credit applicants. One opportunity would be to introduce a model which allows

us to extrapolate on the data for the rejected applicants (Greene, 1998; Feelders, 2000).

For instance, Ash and Meester (2002) and Crook and Banasik (2002) report that such

bias corrections typically have a smaller effect than necessary.

Therefore, we use an approach which avoids any specification of a model for the rejected
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applicants. We perform a worst case analysis to derive lower and upper bounds for

criteria used to evaluate rating systems. More precisely, we consider measures for the

discriminatory power of a rating system and especially its corresponding credit scores

(numerical values that reflect ratings of the credit applicants). We introduce a criterion

that is based on the discrepancy between the score distributions of defaulted and non-

defaulted credit applicants. As another criterion of interest we study the accuracy ratio

(computed from Gini coefficients, see for example Keenan and Sobehart, 1999) which

compares the score distribution of defaulted applicants with that of all credit applicants.

In a different context, Horowitz and Manski (1998) consider a similar censoring problem,

namely survey nonresponse. They derive bounds for the regression function, which in our

case would correspond to default probabilities. In contrast to their analysis, our focus lies

on performance measures for credit scores. For these measures we can exploit the fact

that the probabilities of default and non-default cannot vary independently.

To summarize, the main contributions of the paper are the following:

• We discuss how to evaluate credit scores given that only a part of the defaults and

non-defaults is observed.

• We strongly emphasize that censoring leads to biased estimates for any kind of

performance measure for rating systems.

• We introduce a criterion that is based on the difference of the score distributions

under default and non-default. It is then demonstrated how to estimate lower and

upper bounds for this criterion.

• We also derive lower and upper bounds for the accuracy ratio as an alternative

measure for discriminatory power.

The paper is organized as follows: In Section 2 we discuss how to define the discrimi-

natory power of a credit score. We introduce a criterion that is simple to illustrate and

measures the difference between the score distributions of defaulted and non-defaulted

loans. Section 3 discusses the consequences of censoring for this criterion. In our context,

censoring means that we assume to have default or non-default information only for a

restricted set of applicants. To keep things simple we first study these consequences for
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normally distributed scores. In Section 4 we consider the nonparametric case and show

how to find lower and upper bounds for the proposed criterion under very weak assump-

tions. Section 5 extends our approach to lower and upper bounds for the Gini coefficient

and the accuracy ratio (AR). Section 6 illustrates the obtained bounds by a real data

example. Finally, Section 7 summarizes our results.

2 Discriminatory Power of a Score

Let us start with the following classification problem: Consider random variables X1, . . . ,

Xp and a group indicator Y ∈ {0, 1}. A score S (used to rate applicants for a loan) is an

aggregation of the variables X1, . . . , Xp into a single number. Hence, we can consider any

real valued function S(X1, . . . , Xp) to be a score. For the sake of brevity we will use S

to denote the random variable S(X1, . . . , Xp). In the following we will study the relation

between S and Y .

There exists a variety of criteria to assess the quality of a score. A reasonable score

function for a credit rating should assign higher score values to credit applicants who

have higher probabilities of default (PDs). Therefore the capability to separate the two

groups of observations corresponding to Y = 1 (default) and Y = 0 (non-default) is

a basic feature of a credit score function. A measure for the discriminatory power can

consequently be used as a performance measure for a credit score.

A straightforward approach to assess discriminatory power is the comparison of the condi-

tional distributions of S given default or non-default. We will first focus on the ”difference”

of these two conditional distributions. The methodology that is derived here can however

be used for other measures of performance as well.

In the case of a normal distribution the conditional densities of S given Y = j (j = 0, 1)

are easy to visualize and to compute. Let f0, f1 denote the probability densities of

S|Y = 0 and S|Y = 1, and F0, F1 their cumulative distribution functions. Consider first

the special case that f0 and f1 have exactly one point of intersection, cf. Figure 1. (A

condition for this property will be given in a moment.) Let s be the horizontal coordinate

of this intersection. Assuming a normal distribution means that both densities f0 and f1

are determined by their expectations µ0, µ1 and standard deviations σ0, σ1. We suppose
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Overlapping of Normal Densities
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Figure 1: Overlapping area U for two normal densities

(w.l.o.g.) in the following that µ1 > µ0. Then the region of overlapping U for the two

densities can be calculated as

U = F1(s) + 1− F0(s). (1)

If in the normal case both standard deviations are identical (σ0 = σ1), there is exactly

one point of intersection which is given by

s =
µ0 + µ1

2
.

For different standard deviations (σ0 6= σ1), there may be one or two points of intersection

(as in quadratic discriminant analysis) and the horizontal coordinates are determined by

f0(s) = f1(s) i.e., as solutions of the quadratic equation

s2(σ2
1 − σ2

0) + 2s(µ1σ
2
0 − µ0σ

2
1) + µ2

0σ
2
1 − µ2

1σ
2
0 + σ2

1 log(σ0)− σ2
0 log(σ1) = 0.

The definition of U can be easily generalized to the case of more than one intersection

point and to the nonparametric case when no distributional assumption for S is made:

U =

∫
min{f0(s), f1(s)} ds . (2)
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This definition allows for any number of intersection points of f0 and f1. Alternatively,

assuming a monotone relationship between the score S and the default probability, a

variant of the definition can be given by

U = min
s
{F1(s) + 1− F0(s)} . (3)

This definition is based on the idea that only one optimal intersection point exists in the

monotone case. As for the normal case, we assume that f1 is located to the right of f0.

An analogous definition could be formulated for a monotone decreasing relationship.

It is obvious that for densities f0, f1 on completely different supports (perfect separation)

the region of overlapping U is zero. If both densities are identical (no separation) then

U equals one. In all other cases U will take on values between 0 and 1. An indicator of

discriminatory power is now given by

T = 1− U. (4)

As U , the discriminatory power indicator T takes on values in the interval [0, 1].

In practice we have observations S(i) for the scores and Y (i) for the groups (defaults and

non-defaults in credit scoring). Under the assumption of a normal distribution U (and

hence T ) can be computed using the empirical moments µ̂0, µ̂1, σ̂0, and σ̂1.

Under more general assumptions on the distribution, U and T can be computed for exam-

ple by nonparametric estimates of the densities (histograms, kernel density estimators).

In the monotone case it is sufficient to have nonparametric estimates of the cumulative

distribution functions F0, F1. Those estimates can be easily found by the empirical dis-

tribution functions

F̂j(s) =

∑
i I(S(i) ≤ s, Y (i) = j)∑

i I(Y (i) = j)
, j = 0, 1 . (5)

We remark that in this case the distribution of

T = 1− U = 1−min
s
{F1(s) + 1− F0(s)} = max

s
{F0(s)− F1(s)}

is related to the Kolmogorov distribution. Hence, the Kolmogorov-Smirnov test, which

checks the hypothesis F0 = F1, can be applied to find out if the score influences the PD

at all.
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3 Credit Scoring & Censoring

Consider now a sample of n credit applicants, for which a set of variables is given (e.g.

age of the applicant, amount and duration of the loan, income etc.). As above we assume

that a real valued score S is calculated from these variables at time t = 0 and the default

(Y = 1) or non-default (Y = 1) is observed at time t = 1.

The particular problem of credit scoring is that we observe defaults and non-defaults only

for a subsample of applicants. In more detail, this means that the bank computes scores

for N applicants but only n of them (n < N) are accepted for a loan. Hence, default and

non-default observations are preselected by a condition which we denote by A. This type

of sample preselection can be described as censoring or sample selection.

Obviously, this data sampling will result in biased estimates of all relevant parameters

due to the non-representative data base. In particular, we want to stress that this bias

can be positive or negative. In the sequel, we will see that formally this comes from the

fact that we are working with conditional probabilities. The problem of bias correction

in this case has been mainly studied by using (regression) models that extrapolate on the

unobserved data and with a focus on the estimating regression coefficients and PDs. In the

econometric literature, bivariate regression models for sample selection (Heckman, 1979)

are well-known. For example, Greene (1998) and Boyes, Hoffman and Low (1989) use a

bivariate probit model for credit data. In the statistical literature, this bias correction

technique is know as reject inference. Feelders (2000) and Crook and Banasik (2002) are

relevant references here.

To illustrate the effect of censoring (or sample selection) for estimating U and T assume

again that both densities f0, f1 have exactly one intersection point. Assume also that the

censoring condition is

A = {S ≤ c} , (6)

where c is a threshold such that no credit applicants are accepted for a loan when their

score S is larger than c. Figure 2 shows this modified situation in comparison to Figure 1.

The distribution right to the black line (here c = 2) cannot be observed but needs in fact

to be considered for a correct assessment of the performance of the score.

Let S̃ = (S|A) and Ỹ = (Y |A) denote the observed parts of the score and the group
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Figure 2: Truncated overlapping area for credit data

indicator. Hence, we have only observations for the censored score S̃j = (S̃|Ỹ = j),

j = 0, 1, while we are interested in the non-censored score Sj = (S|Y = j). Under the

assumption (6), the relation between S̃j and Sj is given by

P (S̃j ≤ s) =
P (S̃ ≤ s, Ỹ = j)

P (Ỹ = j)
=
P (S ≤ s, Y = j|A)

P (Y = j|A)

=
P (S ≤ s, Y = j)

P (S ≤ c, Y = j)
if s ≤ c.

Since P (Sj ≤ s) = P (S ≤ s|Y = j) = P (S ≤ s, Y = j)/P (Y = j) it follows that

P (S̃j ≤ s) =
P (Sj ≤ s)P (Y = j)

P (S ≤ c, Y = j)
=
P (Sj ≤ s)

P (Sj ≤ c)
,

which shows

F̃j(s) =
Fj(s)

Fj(c)
. (7)

Here F̃j denotes the cumulative distribution functions of S̃j. Under the assumption that

Sj has a continuous distribution, (7) results in an equivalent rescaling of the densities by

Fj(c). These densities and their region of overlapping Ũ for the normal case are shown in

Figure 3. Note the difference to Figure 2 on the vertical scale, since f̃j(s) ≥ fj(s).
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Figure 3: Observed overlapping area Ũ

We will now examine the difference between Ũ and U , the regions of overlapping for the

censored (observed) and the non-censored (partially unobserved) sample. In the following

we will consider the monotone version of the overlapping region:

U = min
s
{F1(s) + 1− F0(s)} .

Computing the overlapping region Ũ in the same way and using (7), would hence give

Ũ = min
s

{
F̃1(s) + 1− F̃0(s)

}
= min

s

{
F1(s)

F1(c)
+ 1− F0(s)

F0(c)

}
. (8)

This shows that the naive calculation of the overlapping region from incompletely observed

data is usually different (biased) from the objective overlapping region U .

The difference in T = 1−U and T̃ = 1−Ũ can be considerably important as the following

Monte Carlo simulation shows. We have simulated 100 data sets, each of N = 500

observations. The scores S(i) are generated only once and come from a normal distribution

with expectation −3 and variance 1.44. The simulated PDs are obtained from a Logit

model, i.e.,

p(s) =
1

1 + exp(−s)
and the Y (i) are Bernoulli random variables with probability parameter p(S(i)). The

threshold is chosen as c = −0.5, this gives a censored sample of n = 491 observations.
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Discriminatory Power T
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Figure 4: Difference in T (upper boxplot) and T̃ (lower boxplot)

In Figure 4 boxplots for the realized distributions of the estimated T̃ and T are displayed.

The graphic shows that in our simulated example T̃ is typically smaller than T . A closer

inspection of the data shows that in 91 cases
̂̃
T < T̂ and in 9 cases

̂̃
T > T̂ . So using T̃

at the place of T can mislead in assessing the performance of the score in both directions

(over- and underestimation). Recall that this comes from the fact that the acceptance

condition A leads to conditional probabilities.

Before explaining a very general approach to approximate T from T̃ in the following

section, let us first discuss the solution under the assumption that the type of the score

distribution is known. In this case a correction for T̃ can be easily calculated. Let us

outline this idea for the example of normal distributions: Here the moments of S̃j can be

calculated (see for example Greene, 1993, Theorem 22.2) by

E(Sj|Sj ≤ c) = µj + σjλ(αj), (9)

V ar(Sj|Sj ≤ c) = σ2
j [1− λ(αj){λ(αj)− αj}], (10)

with µj and σj denoting the moments of the unconditional distributions, αj = (c −
µj)/σj, and λ(α) = −ϕ(α)/Φ(α) denoting the inverse Mills ratio (using ϕ and Φ for the

normal density and cumulative distribution functions). The expectations µj = E(Sj) and

variances σ2
j = V ar(Sj) can hence be calculated from the credit data using the empirical
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moments of S̃j and by solving the system of equations (9)–(10). Estimates of fj and Fj

are then obtained by plugging µ̂j, σ̂j into the density and cumulative distribution function

of the normal distribution.

We remark that this approach can be generalized to any monotone transformation of

the normal distribution. For example, many variables used for credit scoring have a

skewed distribution. This typically transfers to scores which are linearly weighted sums

of these variables. The log-normal distribution, which can model such a skewed score,

has a direct relation to the normal distribution: Assume Sj is log-normal with parameters

µj, σj, then for the log-score log(Sj) ∼ N(µj, σ
2
j ). Since the logarithm is monotone

Fj(s) = P (Sj ≤ s) = P (log(Sj) ≤ log(s)). The computation for log-normal scores is

therefore completely determined by the normal case. An even wider class of distributions

is covered by using any monotone transformation such as a Box–Cox transformation.

A correction of T̃ is also possible if the censoring is determined by another score function

S?, i.e.,

A = {S? ≤ c}. (11)

This is a more realistic assumption since in practice S? can be considered as the score

function from a previous credit rating system. If the credit rating system is redesigned, the

performance of the new score function S needs to be assessed. Under the very restrictive

assumption of a joint normal distribution of Sj and S?j with moments µj, σj, µ
?
j , σ

?
j and

correlation ρj it is known that

E(Sj|S?j < c) = µj + ρjσjλ(αj), (12)

V ar(Sj|S?j < c) = (σj)
2[1− ρ2

jλ(αj){λ(αj)− αj}], (13)

(cf. Greene, 1993, Theorem 22.4). Here we denote αj = (c−µ?j)/σ?j while λ stands for the

inverse Mills ratio as before. In addition we have the cumulative distribution function of

S?j given by

F̃ ?
j (x) = Φ2

(
x− µ?j
σ?j

,
c− µj
σj

, ρj

){
Φ

(
c− µj
σj

)}−1

, (14)

using the notation Φ2 for the bivariate normal cumulative distribution function. The

moments of S?j could be estimated from equations analogous to (9)–(10). With these

estimates for µ?j , σ
?
j , the system of equations (12)–(14) could be used to find estimates of

the unconditional moments µj, σj and ρj.
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This technique could again be generalized to monotone transformations such as the loga-

rithm or the Box-Cox transformation. However, apart from the restrictive distributional

assumptions this approach requires that observations for both score functions S? and S

given A = {S? ≤ c} are available.

4 Inequalities for the Nonparametric Case

As we have seen in Section 3, the computation of T from S̃j requires specific assumptions

on the distributions of Sj and their relations to the censoring condition A. In the case of

completely unknown distributions there is no possibility to estimate these distributions

beyond A. This is a relevant problem when a bank redesigns its credit rating system since

data on rejected applicants are often not available.

A possible remedy to this problem is the calculation of lower and upper bounds for the

discriminatory power. The approach which we apply is inspired by Horowitz and Manski

(1998). The general assumption throughout this section is that we know the percentage

of rejected loans, i.e., the full number of credit applicants. Denote this number of all

credits (accepted or rejected) by N . Under the assumption that the percentages of both

rejected applicants and defaults are small, relatively narrow bounds can be found for T .

We want to stress that N typically does not contain applicants who are rejected without

being rated.

Recall that the computation of

T = max
s
{F0(s)− F1(s)}

requires the cumulative distribution functions Fj(s) of Sj = (S|Y = j). However, we only

observe F̃j(s), the cumulative distribution function of S̃j = (S̃j|Ỹ = j) = (S|Y = j,A).

To derive upper and lower bounds for T we have to relate the unobservable Fj(s) to

the observable function F̃j(s). The following lemma shows this relation. For the sake of

clarity we have collected all more complex derivations in the appendix.
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Lemma 4.1

Using the notation αj = P (A|Y = j), we have

αjF̃j(s) ≤ Fj(s) ≤ 1− αj{1− F̃j(s)}.

To apply this lemma for calculating bounds for T , we now need bounds for αj. These

follow from

P (Y = j,A) ≤ P (Y = j) ≤ P (Y = j,A) + P (A). (15)

which is a consequence of P (Y = j) = P (Y = j,A) + P (Y = j,A), where A stands for

the complement of A. Since

αj =
P (Y = j|A)P (A)

P (Y = j)
=
P (Ỹ = j)P (A)

P (Y = j)

it follows by (15) that

αj ∈ [αlowj , 1], where αlowj =
P (Ỹ = j)P (A)

P (Ỹ = j)P (A) + P (A)
. (16)

Lemma 4.1 together with (16) yields upper and lower bounds for T . We summarize this

result in the following proposition:

Proposition 4.2

Bounds for T are given by

max
s

[
αlow0 F̃0(s) + αlow1 {1− F̃1(s)}

]
− 1

≤ T ≤ 1−min
s

[
αlow0 {1− F̃0(s)}+ αlow1 F̃1(s)

]
.

We want to stress that in the special case of no censoring (i.e., if all credit applicants

were accepted for a loan and we observe their default or non-default) we have P (A) = 0

and αlow0 = αlow1 = 1. As a consequence, the inequality of Proposition 4.2 reduces to

T = max {F0(s)− F1(s)} which is exactly the definition for the uncensored case.

Let us further remark that the bounds in Proposition 4.2 are quite useful but not the

optimal ones. In contrast to Horowitz and Manski (1998), we can exploit that P (Y = 0)
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and P (Y = 1) are complements and cannot vary independently. Using this fact, we can

derive improved bounds which are summarized in Proposition 4.3. It turns out, however,

that in Monte–Carlo simulations the improvement by Proposition 4.3 is very modest. We

refer here to the simulation example which is presented later on.

Proposition 4.3

Improved bounds for T are given by

max
s

[
β0

pups
F̃0(s) +

β1

1− pups
{1− F̃1(s)}

]
− 1

≤ T ≤ 1−min
s

[
β0

plows
{1− F̃0(s)}+

β1

1− plows
F̃1(s)

]
,

where βj = P (Y = j,A) and the functions plows and pups are defined as in (22) and (25)

in the appendix.

To apply these bounds to empirical data we need to estimate all unknown quantities in

Proposition 4.2 or 4.3. This is possible because we know the total number of scored credit

applicants N . More precisely: For the observed scores under default and non-default we

know their empirical distribution functions
̂̃
F j which can be obtained analogously to (5).

To estimate αlowj , βj, p
low
0 , and pup0 we consider the probabilities of {Ỹ = j} = {Y = j|A},

A, and A, which can be approximated by their observed relative frequencies

P̂ (Ỹ = j) =
nj
n
, P̂ (A) =

n

N
, P̂ (A) =

N − n
N

. (17)

Here n0 denotes the number of observed non-defaults and similarly n1 denotes for the

number of observed defaults. As before, n stands for the sample size of the observed

credits (i.e., n = n0 + n1). This provides the estimates

α̂lowj =
nj

nj +N − n
, β̂j =

nj
N
. (18)

Estimates for plow0 and pup0 can be found by plugging β̂j, P̂ (A) and
̂̃
F j(s) into (22)–(23)

and (25)–(26).

The following Monte Carlo simulation illustrates the effect of the estimated bounds. We

use the previously simulated data set. Figure 5 shows estimates for T , T̃ and the estimated
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Figure 5: Estimated T (thick solid), T̃ (solid) and bounds (dashed)

upper and lower bounds according to Proposition 4.3 for all 100 simulated data sets. To

simplify the comparison all simulated values are sorted by the estimated values of T . The

bounds according to Proposition 4.2 are only slightly wider, such that we omit them here.

Note that in practice the estimation of T̂ could not have been carried out because data on

rejected applicants are usually not collected. However, due to our simulation experiment,

we have the opportunity to estimate both T̃ and T . The simulation analysis shows in

particular, that T might be smaller or larger than T̃ . A closer inspection of the simulated

data reveals that T̃ tends to be larger than T if P (Ỹ = 1) ≈ P (Y = 1). In other words,

T̃ tends to overestimate T if the censoring condition does reject a too small number of

defaults. In the afore-mentioned 9 cases using T̃ instead of T would have led to a too

optimistic value for the discriminatory power of the score. The upper and lower bounds,

however, indicate a correctly specified range for T̂ .

We see that the lower bound in Figure 5 seems to be quite far away from both estimated T

and T̃ . This is a consequence of the fact that our bounds do not require any information

about the structure of the censoring condition A. A narrower lower bound could be
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calculated if additional information on A is available. A trivial example is A = {S ≤ c},
assuming that we would want to evaluate the score S which is at same time used for the

rejection of credit applicants. A more realistic example is A = {S? ≤ c} as discussed in

Section 3. We have seen, however, that to exploit the fact that the acceptance condition

is of the form {S? ≤ c}, the relation between S and S? must be known more precisely.

5 Gini Coefficient and Accuracy Ratio

An alternative and frequently used measure for the performance of a score is the accuracy

ratio AR which is based on the Lorenz curve and its Gini coefficient (Keenan and Sobehart,

1999; Engelmann, Hayden and Tasche, 2003). In the case of censored data, the accuracy

ratio computed from the observed part of the data will be biased as well. As in the case

of T we will now derive bounds for AR if the distribution of the score is unknown.

Let us first introduce the relevant terms for the non-censored case. The Lorenz curve aims

to visualize scores by means of comparing the distributions of S and S1 = (S|Y = 1).

Figure 6 shows the principle of the Lorenz curve. On the horizontal and vertical scales,

the percentages of applicants are sorted from “bad” to “good” scores. The Lorenz curve is

also known as the power curve or the cumulative accuracy profile (CAP). A related curve

is the receiver operating characteristic (ROC) curve (Hand and Henley, 1997; Engelmann

et al., 2003; Sobehart and Keenan, 2001) which compares the distributions of S0 and S1.

To be consistent with our previous notation, let V denote the negative score, i.e., V = −S.
The Lorenz curve of S is then defined by the coordinates

{L1(v), L2(v)} = {P (V < v), P (V < v|Y = 1)} , v ∈ (−∞,∞)

which is equivalent to

{L1(s), L2(s)} = {1− F (s), 1− F1(s)} , s ∈ (−∞,∞).

An estimate of the Lorenz curve can be computed by means of the empirical cumulative

distribution functions F̂ and F̂1.

Recall that scores should assign higher score values to credit applicants with higher PDs.

Such a credit score is obviously good if all vertical coordinates of the Lorenz curve are
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PD

1−F(s)

optimal curve

Percentage

100%

100%

1−F(s|Y=1)

Lorenz curve

2
1_ G

Percentage of applicants

of defaults

Figure 6: Lorenz curve for credit scores

large. The best (optimal) score does exactly separate defaults and non-defaults. The

corresponding optimal Lorenz curve reaches the vertical 100% at a horizontal percentage

of P (Y = 1), the probability of default. The worst score is one that does not contain any

information about defaults and non-defaults, i.e., assigns randomly score values to credit

applicants. The corresponding Lorenz curve is thus (since F1(s) = F (s) in that case)

identical to the diagonal.

A typical Lorenz curve is located between the optimal curve and the diagonal (cf. Fig-

ure 6). Since better scores should be more close to the optimal curve, Lorenz curves can

be applied to compare different score functions. A quantitative measure for the perfor-

mance of a score is based on the area between the Lorenz curve and the diagonal. The

Gini coefficient G denotes twice this area, i.e.,

G = 2

∫
(1− F1)(s) d(1− F )(s)− 1 = 1− 2

∫
F1(s) dF (s) . (19)

In practice the latter integral is estimated by numeric integration of F̂1 over the range

of F̂ .
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To compare different scores, their accuracy ratios AR are defined by relating the Gini

coefficient of each score to the Gini coefficient of the optimal Lorenz curve. The accuracy

ratio is defined by

AR =
G

Gopt

=
G

P (Y = 0)
∈ [−1, 1].

Note that negative values of AR do only occur if the score is unreasonably defined, for

example if low score values correspond with high PDs.

We now turn to the censored case. Here we observe G̃ = (G|A) and P (Ỹ = 0) = P (Y =

0|A), such that we can calculate only

ÃR =
G̃

P (Ỹ = 0)

instead of AR. Thus, analogously to T̃ , the Gini coefficient G̃ and the accuracy ratio ÃR

are biased. We will now show how to obtain upper and lower bounds for G as well as AR.

Percentage

100%

100%

of observed
defaults

1−F(s|A)

1−F(s|Y=1,A)

1
2
_ G~

Lorenz curve of
observed loans

Percentage of  observed applicants

Figure 7: Lorenz curve under censoring

Suppose that the Lorenz curve for the observed loans looks as in Figure 7. To obtain lower

and upper bounds for the Lorenz curve of all credit applicants, we consider two extreme

cases for the unobserved part: (a) all unobserved loans default and (b) all unobserved

loans do not default. These assignments lead to the curves in Figure 8.
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100%

1−F(s|Y=1)

P(A)P(A|Y=1) G
2
1_ ~

_

_

P(A|Y=1)

P(A|Y=1)

P(A,Y=1)P(A,Y=0)
_ P(A)

1−F(s)

100%

100%

1−F(s|Y=1)

__ P(A)

1−F(s)

100%

P(A,Y=1) P(A,Y=0)

P(A|Y=1)

P(A|Y=1)
1_
2 P(A)P(A|Y=1) G

~

_

Figure 8: Lorenz curve under censoring

Hence, lower and upper bounds for G (and subsequently for AR) can be derived by

calculating the areas under the curves in Figure 8. The resulting inequality for AR is

summarized by the following proposition. As before we refer to the appendix for the

detailed proof.

18



Proposition 5.1

Bounds for AR are given by(
ÃR + 1

) β0β1

p?0(1− p?0)
− 1 ≤ AR ≤

(
ÃR− 1

) β0β1

p?0(1− p?0)
+ 1

where

p?0 =


β0 if β0 >

1
2
,

1
2

if β0 ≤ 1
2
≤ β0 + P (A) ,

β0 + P (A) if β0 + P (A) < 1
2
.

Let us remark that in the special case if all credit applicants are accepted, it holds P (A) =

0 and therefore β0 = 1
2
. Hence, the upper and lower bounds for the Lorenz curve as well

for Gini coefficient and accuracy ratio coincide with their respective values in the non-

censored case.

Accuracy Ratio AR and Bounds

0
0.

2
0.

4
0.

6
0.

8
1

T

Figure 9: Estimated AR (thick solid), ÃR (solid) and bounds (dashed)

In practice, we use the estimates α̂low1 ,
̂̃
F 1(s), P̂ (A) from Section 4 and

̂̃
F (s) =

∑
i I(S(i) ≤ s)

n
.
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To illustrate the result of Proposition 5.1, we reuse the data from the Monte Carlo sim-

ulation in Section 4. Figure 9 shows the estimated AR and ÃR as well as the estimated

upper and lower bounds according to all 100 simulated data sets (sorted by the estimated

ARs). We find ÂR >
̂̃
AR in 97 cases and ÂR <

̂̃
AR in 3 cases.

As for T we can conclude that using ÃR instead of AR would have led to too large or

small values for the discriminatory power of the score, whereas the upper and lower bounds

indicate a correctly specified range for ÂR. The remarks on the simulation in Section 4

apply here as well. We see, however, that the estimated bounds are wider (relative to the

values of ÃR and AR) and that the lower bound may be negative. Thus, often only the

upper bound has a useful interpretation.

6 Application

Let us now consider a brief illustration on real data. We use the credit data from Fahrmeir

and Tutz (1994) which are publicly available1. The data set comprises 1000 observations

of private loans. One of the variables is credit history. We will now try to assess discrim-

inatory power under the assumption that customers with a negative credit history (those

which showed a “hesitant payment of previous credits”) would not have granted a loan

and that their default or non-default would not have been observed. This means we use

a sample of n = 960 observed customers whereas the sample size of all applicants is equal

to N = 1000.

We estimate two different Logit specifications. The corresponding variables are listed in

Table 1. The first specification uses more personal and credit information but is not a

superset of the second specification. We compare the scores estimated by a Logit model

in both specifications with respect to T and AR. The resulting criteria on the observed

data as well as the estimated lower and upper bounds are shown in Table 2.

We recognize that as in Figures 5 and 9 the intervals for AR are clearly wider. Conse-

quently, information that we get out of the interval estimates is more precise in the case of

T . In particular, we observe a negative lower bound for AR in specification 2. However,

in this special example the intervals for AR do not have an intersection. This means that

1http://www.stat.uni-muenchen.de/service/datenarchiv/kredit/kredit.html
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Variable Specification 1 Specification 2

previous loans

(1 for OK, 0 for unknown)

×

employed

(1 for more than one year, 0 otherwise)

×

duration of the loan

(discretized with dummies for 10–12, 13–18, 19–

24 and more than 24 months)

×

amount of the loan (+ amount squared) × ×

age of the borrower (+ age squared) ×

interaction term for amount and age ×

savings

(1 for more than 1000 DM, 0 otherwise)

×

foreigner

(1 if yes, 0 otherwise)

×

purpose

(1 if loan is used to buy a car, 0 otherwise)

×

house owner

(1 if yes, 0 otherwise)

×

Table 1: Variables for score estimation

Estimated criterion Specification 1 Specification 2

T̃ 0.292 0.159

maximal range of T [0.222,0.349] [0.108,0.235]

ÃR 0.419 0.125

maximal range of AR [0.238,0.492] [-0.018,0.236]

Table 2: Discriminatory power of the scores

specification 1 is definitely better than specification 2. Here, the unobserved data cannot

improve the accuracy ratio for specification 2 over that for specification 1.
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7 Conclusions

The discriminatory power of a credit score can be estimated by comparing the score dis-

tributions of the defaults with that of the non-defaults or the full sample. We consider two

possible criteria in this paper: The maximal difference of the cumulative score distribution

functions for non-defaults and defaults

T = max
s
{F0(s)− F1(s)}

and the accuracy ratio

AR =
1− 2

∫
F1(s) dF (s)

P (Y = 0)

As we have seen, a censored sample can lead to considerable bias when using the criteria

to evaluate the score with respect to discriminatory power. Our simulations show that

the bias might be positive or negative, i.e., there is no simple rule to take account for this

bias.

A corrected calculation of the criteria is possible if details on the acceptance or rejection

of the credit applicants are known. However, often no precise information about rejected

clients is available. For this case the paper offers the possibility to assess discriminatory

power by computing lower and upper bounds of such criteria. The calculation of bounds

is possible under the very weak assumption that only the percentage of rejected credits is

known.

Appendix: Proofs

Proof of Lemma 4.1

We have

Fj(s) = P (S ≤ s|Y = j)

= P (S ≤ s,A|Y = j) + P (S ≤ s,A|Y = j)

= P (S ≤ s|A, Y = j)P (A|Y = j) + P (S ≤ s,A|Y = j),

hence

Fj(s) = F̃j(s)P (A|Y = j) + P (S ≤ s,A|Y = j). (20)
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We find an upper bound for Fj(s) by using that {S ≤ s} ∩ A ⊆ A in the second term of

(20), i.e.,

Fj(s) ≤ F̃j(s)P (A|Y = j) + P (A|Y = j)

= 1− P (A|Y = j){1− F̃j(s)}.

A lower bound for Fj(s) is given by omitting the second term of (20) completely, such

that

Fj(s) ≥ F̃j(s)P (A|Y = j).

�

Proof of Proposition 4.2

The result follows directly by combining Lemma 4.1 and the bounds in (16). �

Proof of Proposition 4.3

We introduce the additional abbreviations βj = P (Y = j,A) and

p = P (Y = 0),

such that α0 = β0/p and α1 = β1/(1 − p). We will first consider bounds for U and later

on transfer them into bounds for T .

Consider the lower bound for U first. From the proof of Lemma 4.1 we see

F1(s) + 1− F0(s) ≥ α1F̃1(s) + α0{1− F̃0(s)}

=
β1

1− p
F̃1(s) +

β0

p
{1− F̃0(s)} (21)

In the last term each of the probabilities can be estimated from the observed data except

for p. Hence, for given s the last term has to be minimized with respect to p. For this

minimization one has to consider the three cases β1F̃1(s) = β0{1 − F̃0(s)}, β1F̃1(s) >

β0{1− F̃0(s)}, and β1F̃1(s) < β0{1− F̃0(s)}, which all lead to the same optimum:

plows =


β0 if γs < β0,

β0 + P (A) if γs > β0 + P (A),

γs, otherwise,

(22)
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and

γs =

√
β0{1− F̃0(s)}√

β0{1− F̃0(s)}+

√
β1F̃1(s)

. (23)

The upper and lower thresholds in (22) are consequences of the bounds in (15).

To derive the upper bound of U we have again from the proof of Lemma 4.1

F1(s) + 1− F0(s) ≤ 2− α1{1− F̃1(s)} − α0F̃0(s)

= 2− β1

1− p
{1− F̃1(s)} − β0

p
F̃0(s). (24)

Maximization of the last term with respect to p leads to a similar result as before:

pups =


β0 if δs < β0,

β0 + P (A) if δs > β0 + P (A),

δs, otherwise,

(25)

and

δs =

√
β0F̃0(s)√

β0F̃0(s) +

√
β1{1− F̃1(s)}

. (26)

Combining the results we obtain

β1

1− plows
F̃1(s) +

β0

plows
{1− F̃0(s)}

≤ F1(s) + 1− F0(s) ≤ 2− β1

1− pups
{1− F̃1(s)} − β0

pups
F̃0(s) (27)

such that by using T = 1− U the statement is proved. �

Proof of Proposition 5.1

We recall the notation βj = P (Y = j,A), which allows us to write β0 + β1 instead of

P (A). Additionally, we introduce the notation

pj = P (Y = j).

Obviously these probabilities are related by p0 +p1 = 1. We can now express the following

terms using pj and βj.

P (Y = j|A) =
βj

β0 + β1
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ÃR =
β0 + β1

β0

G̃ ⇐⇒ G̃ =
β0

β0 + β1

ÃR

P (A, Y = j) = pj − βj

P (A|Y = j) =
pj − βj
pj

Consider first the lower bound for AR. From the first plot of Figure 8 we see that the

lower bound for G (twice the area under the curve minus 1) equals

Glow = P (A)P (A|Y = 1)G̃+ P (A)P (A|Y = 1)

+P (A, Y = 1) {1− P (A|Y = 1)} − 1

= (β0 + β1)
β1

p1

(G̃+ 1)− (p1 − β1)

(
1 +

β1

p1

)
− 1 .

Using the relation between G̃ and ÃR leads to

Glow =
1

p1

{
(ÃR + 1)β0β1 − p0p1

}
.

Thus we obtain

ARlow =
Glow

p0

=
(
ÃR + 1

) β0β1

p0p1

− 1 . (28)

We now use the same approach for the upper bound of AR. From the second plot in

Figure 8 we calculate as an upper bound for G

Gup = P (A|Y = 1)P (A, Y = 1) + P (A)P (A|Y = 1)G̃

+P (A) {P (A|Y = 1) + 1}+ P (A, Y = 0)− 1

=
p1 − β1

p1

(p1 − β1) + (β0 + β1)
β1

p1

G̃

+ (β0 + β1)

(
p1 − β1

p1

+ 1

)
+ 2(p0 − β0)− 1

=
1

p1

{
β0β1(ÃR− 1) + p0p1

}
.

This results in

ARup =
Gup

p0

=
(
ÃR− 1

) β0β1

p0p1

+ 1 . (29)

Hence, we obtain together with (28)(
ÃR + 1

) β0β1

p0p1

− 1 ≤ AR ≤
(
ÃR− 1

) β0β1

p0p1

+ 1 . (30)
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To achieve the minimal value for the lower and the maximal value for the upper bound,

it is obvious that p0p1 = p0(1 − p0) must be maximal. It is important to note that p0

cannot vary freely since from (15) we have

β0 ≤ p0 ≤ β0 + P (A) .

As a consequence, we have to distinguish three cases:

(1) β0 ≤ 1
2
≤ β0 + P (A)

In that case, the value that maximizes p0(1 − p0) is p?0 = 1
2

(as if p0 could take on

all values between 0 and 1).

(2) 1
2
< β0

Here, the optimal value is p?0 = β0.

(3) 1
2
> β0 + P (A)

Here, the optimal value is p?0 = β0 + P (A).

�
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