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1 Introduction

Starting with the seminal papers by Merton (1969, 1971) there has been a lot of
research on continuous-time portfolio optimization. Whereas Merton considers a
portfolio problem with a constant investment opportunity set, several authors look
at portfolio problems with different variants of a stochastic opportunity set such as
stochastic interest rates or stochastic volatility. For the case of stochastic interest
rates the reader is referred to Korn/Kraft (2001) and the references therein.

Given an investor maximizing utility from terminal wealth, Zariphopoulou (2001)
considers a portfolio problem where the investor can put her money into a stock
and a money market account. The stock is driven by a one-dimensional geomet-
ric Brownian motion with parameters depending on a one-dimensional geometric
Brownian state process. The inherent Brownian motions may be not perfectly cor-
related so that incomplete market situations are covered. This setup is able to
support portfolio problems with stochastic volatility. Zariphopoulou (2001) derives
Feynman-Kac representations of the candidates for the value function and for the
optimal portfolio process. By candidate for the value function we mean the process
which solves the Hamilton-Jacobi-Bellman equation (if any). The corresponding
portfolio process is said to be the candidate for the optimal portfolio process. Let
us stress that in general these candidates need not be the value function and the
optimal portfolio process. Applying viscosity solution techniques, Zariphopoulou
(2001) is able to prove optimality of the candidates under some assumptions on
the coefficients of the stochastic differential equations of the stock and the state
process. More precisely, she assumes that linear growth as well as Lipschitz condi-
tions are satisfied and that the market price of risk is bounded (Conditions (3.20),
(3.21), and (3.22) in her paper). However, the first two assumptions exclude state
processes which only meet the conditions of Yamada and Watanabe.1 Probably the
most prominent (and practically relevant) example which is thus not covered by her
verification result is a portfolio problem with Heston’s stochastic volatility model.
Besides, the assumption of a bounded market price of risk does not cover portfolio
problems, where the market price of risk equals some constant multiplied by some
power of the volatility process. Such a specification was first proposed by Merton
(1980) and is used in a couple of papers such as Bakshi/Chao/Chen (1997) and
Bates (2000). Therefore, in this paper we prove a verification result which does not
exclude such situations. Then we show that given the canonical formulation of He-
ston’s volatility model with a market price of risk linear in the volatility process the
candidate for the value function is only well-defined under some specific condition
on the parameters of the model. Further, we are able to prove that this condition is
also sufficient for the candidate to be indeed the value function. We want to stress
that both a square-root state process and an unbounded market price of risk are
not covered by Zariphopoulou’s verification result. As however Heston’s stochastic
volatility model is something like an industry standard for option pricing, we believe
that it is worth to solve a portfolio problem in this setting.

Let us now shortly discuss some other papers on portfolio problems with stochastic
volatility including Chacko/Viceira (2002), Liu (2001a, 2001b), Pham (2002), and
Fleming/Hernandez-H. (2003). Liu (2001a) considers Heston’s model and comes up
with the same candidate for the optimal portfolio strategy as we do for Heston’s

1See e.g. Karatzas/Shreve (1991), p. 291.
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model. The main problem with his results is that Korn/Kraft (2002) were able to
construct examples showing that under some parametrizations of the model there
exist infinitely many bounded portfolio strategies which lead to an infinite wealth.
As Liu (2001a) does not present a verification result, it remains open under which
conditions the candidate for the optimal portfolio strategy is indeed the unique
optimal solution of the problem. Liu (2001b) treats the portfolio problem with
a more general specification of the risk premium, but again he does not present
a valid verification result. In contrast to Liu (2001a, b), Chacko/Viceira (2002)
consider a portfolio problem with a different specification of the market price of
risk. Besides, they use a slightly different stochastic volatility model and they
also look at problems with intermediate consumption. However, they are only
able to compute optimal portfolio strategies in special cases of their model and
do not provide a verification result. In contrast to these papers, Pham (2002)
and Fleming/Hernandez-H. (2003) derive explicit verification results proving that
their portfolio strategies are indeed optimal. Given an investor maximizing power
utility from terminal wealth, Pham (2002) considers a multidimensional model for
securities with stochastic volatilities. However, he assumes that the coefficients of
his volatility process satisfy a certain Lipschitz condition which excludes Heston’s
model (Condition (H1) in his paper). Fleming/Hernandez-H. (2003) consider an
investor maximizing her lifetime consumption and assume the volatility of the assets
to be a function σ(·) depending on a state process with constant volatility. Further,
it is assumed that σ(·) is bounded away from zero as well as bounded from above
and that the first derivative σ′(·) is bounded (Assumption A in their paper). These
assumptions are not satisfied in important examples such as Heston’s model.

To summarize, the contributions of this paper are the following:

• We prove a verification result which covers Heston’s stochastic volatility model
with an unbounded market price of risk.

• Given an (unbounded) market price of risk which equals a linear function of
the volatility process, we derive a condition on the parameters of the model
ensuring well-defined candidates in Heston’s framework.

• We are able to show that this condition also ensures that the candidate for the
value function and the optimal portfolio process are indeed the value function
and the optimal portfolio process. The fact that such a condition has to be
introduced in order to get a meaningful solution fundamentally distinguishes
the results in this paper from Zariphopoulou’s results.

The remainder of this paper is structured as follows: In Section 2 we introduce
a Brownian framework for stochastic volatility which includes Heston’s model as
a special case. In Section 3 we shortly summarize Zariphopoulou’s representation
result concerning the candidate for the value function and the candidate for the
optimal portfolio process. A verification result for portfolio problems with stochastic
volatility which covers Heston’s model is the subject of Section 4. Then, in Section
5 we consider Heston’s model in detail and apply our verification result. Further,
we look at different but related specifications of the market price of risk and of the
volatility of the stock.
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2 The Portfolio Problem

Let (Ω,F , P ) be a probability space. On this space two correlated Brownian motions
Ŵ1, Ŵ2 are given with < Ŵ1, Ŵ2 >t= ρt, ρ ∈ [−1, 1]. Additionally, {Ft}t≥0 denotes
the corresponding Brownian filtration. We consider an investor maximizing utility
from terminal wealth at time T with respect to a power utility function U(x) = 1

γ xγ ,
x ≥ 0. We concentrate on the case γ ∈ (0, 1) because it allows us to present the
main ideas. The investment opportunities include a money market account with
the dynamics

dM(t) = M(t)rdt,

M(0) = 1, where for simplicity the short rate r is assumed to be constant. Addi-
tionally, the investor can put her money into a stock with the dynamics governed
by the stochastic differential equation (SDE)

dS(t) = S(t)
[
(r + λ(t))dt + ν(t) dŴ2(t)

]
, (1)

where it is assumed that λ and ν are functions of time t and the state process

dz(t) = χ(t)dt + δ(t)dŴ1(t). (2)

Again we assume that χ and δ are functions of t and z, i.e. χ(t) = χf (t, z(t))
and δ(t) = δf (t, z(t)) with real-valued functions χf and δf . For instance, the
specifications

ν(t) =
√

z(t), χ(t) = κ(θ − z(t)), κ, θ > 0, and δ(t) = σ
√

z(t), σ > 0, (3)

lead to Heston’s model. The wealth equation for this problem reads as

dXπ(t) = Xπ(t)
[(

r + λ(t)π(t)
)
dt + π(t)ν(t)dŴ2(t)

]
, (4)

Xπ(0) = x0 > 0, where π(t) denotes the proportion of wealth invested in the
stock.2 It is assumed that all coefficients of the above SDEs are progressively
measurable with respect to the Brownian filtration {Ft}t and that the SDEs have
unique solutions. For (1) and (4) the latter requirement is met if3

∫ T

0

|λ(s)|+ ν2(s) ds < +∞ a.s. and (5)

∫ T

0

|λ(s)π(s)|+ π2(s)ν2(s) ds < +∞ a.s. (6)

For (2) we get uniqueness if - as assumed in the verification result of Zariphopoulou
(2001) - global Lipschitz conditions

|$(z′, t)−$(z′′, t)| = K|z′ − z′′| (7)

and linear growth conditions

$2(z′, t) = $(1 + z′2) (8)

on the coefficients are satisfied, where z′, z′′ ∈ [0,∞), t ∈ [0, T ], K is a positive
constant, and $ stands for χf and δf (Conditions (3.20) and (3.21) in her paper).

2For notational convenience, we sometimes omit the superindex π of X.
3See e.g. Korn/Korn (2001), p. 54.
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However, these assumptions exclude square-root processes such as the volatility pro-
cess of Heston’s model because δ in (3) does not meet condition (7). As mentioned
in the introduction, the conditions of Yamada and Watanabe ensure existence and
uniqueness for square-root processes and therefore we do not restrict our consider-
ations to (7) and (8).4 This is possible because the proof of our verification result
does not explicitly require assumptions (7) and (8), but we only need the existence
and uniqueness of solutions of the above SDEs.

The optimization problem of the investor reads as

max
π(·)

E
(

1
γ Xπ(T )γ

)

with the corresponding value function

V (t, x, z) = max
π(·)

Et,x,z
(

1
γ Xπ(T )γ

)
.

In the sequel we mostly work with independent Brownian motions W1 and W2 given
by Ŵ1 = W1 and Ŵ2 = ρW1 +

√
1− ρ2 W2.

3 The Representation Result by Zariphopoulou

In this section we summarize Zariphopoulou’s representation result for the candidate
of the value function. We want to stress that Zariphopoulou (2001) only assumes the
above discussed Lipschitz and growth conditions (7) and (8) to prove her verification
theorem and not to derive her representation result for the value function.

We face a two-dimensional control problem with state process (X, z). The Hamilton-
Jacobi-Bellman equation which has to be satisfied by the candidate G for the value
function V reads as5

sup
π

{
Gt + x(r + λπ)Gx + χGz + 0.5x2ν2π2Gxx + δxνπρGxz + 0.5δ2Gzz︸ ︷︷ ︸

=:AπG

}
= 0

(9)
with the terminal condition G(T, x, z) = 1

γ xγ . By Zariphopoulou (2001), the can-
didate G of the value function possesses the following representation

G(t, x, z) = 1
γ xγ ·

(
f(t, z)

)c

with f(T, z) = 1 for all z

and c = 1−γ
1−γ+ρ2γ . Let r̃ := −γ

c

(
r + 0.5 1

1−γ
λ2

ν2

)
and χ̃ :=

(
χ + γ

1−γ
λ
ν ρδ

)
. Then the

function f has the Feynman-Kac representation

f(t, z) = Ẽ
t,z

(
e
−

∫ T

t
r̃(s) ds

)
(10)

with
dz(t) = χ̃(t)dt + δ(t)dW̃1(t),

4To prove her verification result, Zariphopoulou (2001) additionally assumes that condition

(7) is also satisfied by the coefficients of (1). In general this is a stronger requirement then our

condition (5).
5For notational convenience, we often omit the functional dependencies with respect to t, x

and z.
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where the measure is changed to P̃ which is defined by the Girsanov density

Z(t) :=
dP̃

dP

∣∣∣∣∣
Ft

= exp
(
− 0.5( γ

1−γ )2ρ2

∫ t

0

ζ2(s) ds + γ
1−γ ρ

∫ t

0

ζ(s) dW1(s)
)

with the market price of risk ζ(t) := λ(t)/ν(t). The corresponding expectation is
denoted by Ẽ and the process

W̃1(t) = W1(t)− γ
1−γ ρ

∫ t

0

ζ(s) ds

is a Brownian motion under the measure P̃ . Further, the candidate for the optimal
portfolio strategy can be written as

π∗(t) =
1

1− γ

λ(t)
ν2(t)

+
1

1− γ
cρ

δ(t)
ν(t)

fz(t, z(t))
f(t, z(t))

.

We want to stress that these results are only meaningful if Z is a density and f is
well-defined.

4 A Verification Result

As just mentioned, the representation results in Section 3 need not always be mean-
ingful. However, if Z is a density and f is in C1,2[0, T ], we can give a suitable
verification result. To formulate this result we need some definitions. Without loss
of generality we assume that the range of z equals [0,∞).

Definition 4.1 (Admissible Portfolio Strategy) A portfolio strategy π is said
to be admissible if the following conditions are satisfied:

(i) π is progressively measurable,

(ii) for all initial conditions (t0, x0, z0) ∈ [0, T ]×(0,∞)2 the wealth process Xπ with
Xπ(t0) = x0 has a pathwise unique solution {Xπ(t)}t∈[t0,T ],

(iii) Et0,x0,z0

([
1
γ Xπ(T )γ

]−)
< +∞,

(iv) Xπ ≥ 0.

We denote the set of admissible strategies by A. Besides, A2 denotes the subset of
all admissible strategies π belonging to L2[0, T ], i.e.

E
( ∫ T

0

π2(s) ds

)
< ∞.

By assumption (6), the wealth equation (4) has the unique solution

X(t) = X(0) · exp
( ∫ t

0

r + λ(s)π(s)− 0.5π2(s)ν2(s) ds +
∫ t

0

π(s)ν(s) dŴ2(s)
)

and thus (ii) and (iv) are met. Further, for γ > 0 the condition (iii) is satisfied by
all means.

Definition 4.2 (Property U) Assume that Z is well-defined and that we have
f ∈ C1,2[0, T ]. Let π ∈ A. If for all sequences of stopping times {θp}p∈IN with
0 ≤ θp ≤ T the sequence {G(θp, X

π(θp), z(θp))} is uniformly integrable, then we say
that π has property U.
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In Section 2 we assumed that ν and δ are functions of t and z(t), i.e. ν(t) =
νf (t, z(t)) and δ(t) = δf (t, z(t)) with real-valued functions νf and δf . Now we make
the additional assumption that for all bounded sets I ⊂ [0, T ]× [0,∞) there exists
some constant K such that

|νf (t, z)|+ |δf (t, z)| ≤ K for all (t, z) ∈ I. (11)

Note that this condition is satisfied if νf and δf are continuous functions. Then we
can prove the following proposition:

Proposition 4.1 (Verification Result) Assume that Z is well-defined and that
f ∈ C1,2[0, T ]. Then we obtain

Et0,x0,z0

(
1
γ Xπ(T )γ

)
≤ G(t0, x0, z0) for all π ∈ A. (12)

Now assume π∗ ∈ A2. If (11) holds and π∗ has property U, then we get

Et0,x0,z0

(
1
γ Xπ∗(T )γ

)
= G(t0, x0, z0). (13)

Proof. See Appendix.

Conditions (12) and (13) ensure that G is the value function of the problem and
π∗ is the optimal portfolio strategy. In contrast to Zariphopoulou (2001) we have
to make the assumption f ∈ C1,2[0, T ], while she was able to show this but under
strong assumptions (Lipschitz and growth conditions as well as bounded market
price of risk). In the following section we will see that in a Heston model with
unbounded market price of risk f is not even well-defined in general. Therefore,
one cannot expect a result as in Zariphopoulou (2001) to hold.

5 A Portfolio Problem within Heston’s Setting

In a Heston model with

χ(t) = κ(θ − z(t)), κ, θ > 0, (14)

δ(t) = σ
√

z(t), σ > 0,

λ(t) = λ̄ · z(t), λ̄ ∈ IR,

ν(t) =
√

z(t)

it is not obvious if Z and f are well-defined because the market price of risk ζ(t) =
λ(t)/ν(t) = λ̄

√
z(t) is unbounded. Thus, we first derive a condition under which

this is valid. Then we apply our verification result.

5.1 Well-defined Candidates in Heston’s Model

The process z is given by

dz(t) = κ(θ − z(t))dt + σ
√

z(t)dW1(t) (15)

under P and by

dz(t) =
(
κ(θ − z(t)) + γ

1−γ ρλ̄σz(t)
)
dt + σ

√
z(t)dW̃1(t) (16)

= κ̃
(

κθ
κ̃ − z(t)

)
dt + σ

√
z(t)dW̃1(t)
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with κ̃ = κ− γ
1−γ ρλ̄σ under P̃ . Note that for κ̃ = 0 the drift simply equals κθ. Our

first task is to analyze under which conditions Z is a density and f is well-defined.
For this reason, we apply the following variant of a theorem by Pitman and Yor.

Proposition 5.1 Consider the process (15) and let

ϕ(t, T, z) := E
(

exp
(
− αz(T )− β

∫ T

t

z(s) ds
)∣∣∣∣ z(t) = z

)
(17)

be the characteristic function of
(
z(T ),

∫ T

t
z(s) ds

)
. Then ϕ is well-defined if

β ≥ − κ2

2σ2
and (18)

α ≥ −κ + a

σ2
(19)

with a :=
√

κ2 + 2βσ2. More precisely, we get

ϕ(t, T, z) = exp
(−A(t, T )−B(t, T ) · z)

, (20)

where for fixed T > 0 the functions A(·, T ) and B(·, T ) are real-valued C1-functions
on [0, T ], which satisfy the ODEs

−β −Bt(t, T ) + B(t, T )κ + 0.5B2(t, T )σ2 = 0, (21)

−At(t, T )− κθB(t, T ) = 0 (22)

with A(T, T ) = 0 and B(T, T ) = α. For β > − κ2

2σ2 and α > −κ+a
σ2 the functions A

and B are given by

A(t, T ) = −κθ(κ−a)
σ2 (T − t) + 2κθ

σ2 ln
(

1−ke−a(T−t)

1−k

)
, (23)

B(t, T ) = −−k(κ + a)e−a(T−t) + κ− a

σ2(−ke−a(T−t) + 1)
, (24)

with k := ασ2+κ−a
ασ2+κ+a . For β ≥ − κ2

2σ2 and α = −κ+a
σ2 we obtain

A(t, T ) = −κθ κ+a
σ2 (T − t), B(t, T ) = −κ+a

σ2 . (25)

Proof. See Appendix.

The expected value of Z as well as the function f can be rearranged such that
both have a representation corresponding to (17). Therefore, applying the above
proposition, we obtain the following result:6

Proposition 5.2 (Sufficient Condition for Well-defined Candidates)
In Heston’s model (14) the process Z is a density by all means. Besides, the function
f is real-valued and has the representation

f(t, z) = exp
(

γ
c r(T − t)−Af (t, T )−Bf (t, T )z

)
(26)

if
γ

1− γ
λ̄
(κρ

σ
+

λ̄

2

)
<

κ2

2σ2
. (27)

6Note that e.g. Novikov’s condition would not enable us to conclude that Z is a density for all

parametrizations of the model.
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Here, Af is a real-valued C1-function and Bf (t, T ) = 2β̃ eã(T−t)−1
eã(T−t)(κ̃+ã)−κ̃+ã

, where

β̃ = −0.5 1
c

γ
1−γ λ̄2, ã =

√
κ̃2 + 2β̃σ2, c = 1−γ

1−γ+ρ2γ , and κ̃ = κ− γ
1−γ ρλ̄σ with

κ̃ > 0. (28)

Proof. See Appendix.

By Proposition 5.2, the candidates for the value function and for the optimal port-
folio strategy presented in Section 3 are well-defined under assumption (27). The
candidate for the optimal portfolio strategy reads as

π∗(t) =
1

1− γ
λ̄− 1

1− γ
cρσ Bf (t, T ) (29)

=
1

1− γ
λ̄ +

γ

(1− γ)2
ρσλ̄2 eã(T−t) − 1

eã(T−t)(κ̃ + ã)− κ̃ + ã

Due to (28) and ã > 0, the last fraction in (29) is always positive and bounded.
Therefore, π∗ is a deterministic and continuous process, which is consequently
bounded on [0, T ]. Finally, let us remark that for γ < 0 the function f is al-
ways well-defined because the argument of the exponential function in (10) is then
negative.

5.2 Optimality in Heston’s Model

In the previous section we have just seen that, given condition (27) holds, the
candidates G and π∗ are well-defined. Now we will show that this condition does
not only provide well-defined candidates, but is also sufficient to verify that the
candidates are indeed the value function and the optimal portfolio strategy. Let us
remark that the wealth equation reads as

dX(t) = X(t)
[(

r + λ̄z(t)π(t)
)
dt + π(t)

√
z(t) dŴ2(t)

]
. (30)

Then we get the following result which is the key result of this paper.

Theorem 5.1 (Optimality in Heston’s Model) Assume condition (27) to hold.
Then the candidate (29) is the optimal portfolio process in Heston’s model (14).

Proof. See Appendix.

Hence, we have found a completely explicit solution of a portfolio problem with an
unbounded market price of risk in the Heston setting. Note that due to the special
form of the model we obtain the required smoothness for applying Proposition 4.1
without using viscosity theory in contrast to Zariphopoulou (2001) in her setting.

We also want to stress that, by results of Korn/Kraft (2002), the Heston model (14)
is (at least partly) not well-behaving if (27) is not satisfied. More precisely, they
construct examples where there exists a convex set of bounded portfolio strategies
leading to infinite utility. An obvious hint why such a strange property occurs is the

form of ã =
√

κ̃2 + 2β̃σ2 in the representation of the value function: A violation of
(27) is equivalent with ã being a complex number.
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Remarks: (i) The property that the portfolio problem does not lead to meaningful
results for all parametrizations of the model critically hinges upon the assumption
of an unbounded market price of risk. To see this, let us consider a Heston model
with a bounded market price of risk. For simplicity, in (14) we choose an excess
return of λ(t) = λ̄ ·

√
z(t) (instead of λ(t) = λ̄ · z(t)). Then we even obtain a

constant market price of risk λ(t)/ν(t) = λ̄ and, by (10), the function f is always
well-defined and does not depend on z. Hence, we have π∗(t) = λ̄/

√
z(t) and,

by applying our results of Section 4, one can easily show that this is the optimal
strategy for every parametrization of the model. Note that in contrast to our above
results the optimal portfolio process π∗ is now unbounded.

(ii) Assuming λ̄ > 0 condition (27) is equivalent to λ̄ < κ
σ

(√
ρ2 + 1−γ

γ − ρ
)

. Hence,

(27) gives an upper bound for the slope λ̄ of the excess return function λ̄f (t, z) = λ̄·z.

Finally, we apply Theorem 5.1 to prove optimality in a generalized version of Hes-
ton’s model which for instance is discussed by Liu (2001b). Let us assume that the
stock price can be written as

dS(t) = S(t)
[(

r + λ̄ · [v(t)]
1+d
2

)
dt +

√
v(t) dŴ2(t)

]
(31)

with v(t) = [z(t)]
1
d , where z is defined as above and d ∈ IR\{0}. The Heston model

(14) corresponds to the special case d = 1 and without loss of generality one can
restrict to this case. This can be seen from the wealth equation

dX(t) = X(t)
[(

r + π(t) · λ̄ · [z(t)]
1
2d + 1

2

)
dt + π(t) · [z(t)]

1
2d dŴ2(t)

]
.

Applying an idea of Zariphopoulou (2001), the definition π(t) = π̂(t)[z(t)]−
1
2d + 1

2

leads to

dX(t) = X(t)
[(

r + π̂(t) · λ̄ · z(t)
)
dt + π̂(t) · z(t)

1
2 dŴ2(t)

]
.

Consequently, one can solve the problem using the results of Heston’s model (14)
and then multiply the optimal proportion by the correction factor [z(t)]−

1
2d + 1

2 . We
summarize this result in the following corollary:

Corollary 5.1 (Optimality in the Generalized Heston Model) Consider the
generalized Heston model (31) and assume (27) to hold. Then the portfolio process
πc(t) = π∗(t) · [z(t)]−

1
2d + 1

2 is the optimal one. Here, π∗ is given by (29).

6 Appendix

Proof of Proposition 4.1. To shorten notations, let X∗ = Xπ∗ . Besides, let π be
an admissible portfolio strategy. Note that the idea for the proof of (12) goes back
to Duffie (1996, p. 200).

Proof of (12). Since, by assumption (27), G is in C1,2, we can apply Ito’s formula
to obtain

G(T, Xπ(T ), z(T )) = G(0, x0, z0)

+
∫ T

0

Aπ(s)G(s, Xπ(s), z(s)) ds +
∫ T

0

Gz(s,Xπ(s), z(s))δ(s) dW1(s)

9



+
∫ T

0

Gx(s,Xπ(s), z(s))Xπ(s)π(s)ν(s) dŴ2(s)

≤ G(0, x0, z0) +
∫ T

0

Gz(s, Xπ(s), z(s))δ(s) dW1(s)

+
∫ T

0

Gx(s,Xπ(s), z(s))Xπ(s)π(s)ν(s) dŴ2(s)

=: Y (T ),

because, by (9), we have Aπ(s)G(s, X(s), z(s)) ≤ 0 for all s ∈ [0, T ]. As G ≥ 0, the
local martingale Y is a supermartingale. Note that G(T, x, z) = 1

γ xγ . Therefore,
by taking expectations we obtain (12).

Proof of (13). Let

Op := [0,∞)2 ∩ {w ∈ IR2 : |w| < p, dist(w, ∂O) > p−1}, p ∈ IN.

and Qp := [0, T − p−1) × Op, where the sets Qp are not empty for p ∈ IN with
p > T−1 =: p̃. Without loss of generality we therefore assume p > p̃. Besides,
let θp := min{T, τp} be a stopping time, where τp denotes the first exit time of
(s,X(s), z(s)) from Qp. Note that for p →∞ we get τp →∞ a.s. and, consequently,
θp → T a.s. As Aπ∗(s)G(s,X∗(s), z(s)) = 0 for all s ∈ [0, T ], by Ito’s formula, we
get

G(θp, X
∗(θp), z(θp)) = G(0, x0, z0) +

∫ θp

0

Gz(s,Xπ(s), z(s))δ(s) dW1(s)

+
∫ θp

0

Gx(s,X∗(s), z(s))X∗(s)π∗(s)ν(s) dŴ2(s).(32)

As Gx and Gz are continuous, (11) is assumed to hold, and π∗ ∈ A2, the stopped
Ito integrals are martingales. Hence, we obtain

E
(
G(θp, X

∗(θp), z(θp))
)

= G(0, x0, z0).

Since we assume that π∗ has property U, the family
{

G(θp, X
∗(θp), z(θp))

}
p

is

uniformly integrable. Thus, we end up with

G(0, x0, z0) = lim
p→∞

E
(
G(θp, X

∗(θp), z(θp))
)

= E
(
G(T, X∗(T ), z(T ))

)
= E

(
1
γ X∗(T )γ

)

and this proves (13). 2

Proof of Proposition 5.1. We present the relevant parts of a proof given by Kraft
(2002). Starting with the ansatz7

ϕ(t, T, z) = exp
(
−A(t, T )−B(t, T ) · z

)
,

where A(·, T ) and B(·, T ) are continuous differentiable functions of time t, one can
show that

eF (t) := e
−β

∫ t

0
z(s) ds−A(t,T )−B(t,T )z(t)

7I thank Chris Rogers for pointing out the idea of the proof in the special case when α is zero.

10



is a P -martingale. Applying Ito’s formula to the process F , we obtain

deF (t) = eF (t)

[{− β −Bt(t, T ) + B(t, T )κ + 0.5B2(t, T )σ2
}

z(t)

+
{
−At(t, T )−B(t, T )κθ

}]
dt− eF (t)B(t, T )σ

√
z(t) dW1(t).

Hence, eF is only a martingale if the drift of the above SDE vanishes. This leads
to the differential equations (21) and (22) for A and B with A(T, T ) = 0 and
B(T, T ) = α. We make the ansatz B(t, T ) = − 2

σ2
φt(t,T )
φ(t,T ) . Computing the derivative

and inserting in (21) leads to

φtt − κφt + β
c φ = 0. (33)

Solving the corresponding polynomial equation y2 − κy + β
c = 0, we obtain

y1/2 = 0.5κ± 0.5
√

κ2 + 2βσ2

︸ ︷︷ ︸
=:a

.

These solutions are only real numbers if a ≥ 0 leading to condition (18).

1st case: a > 0. Then every solution of (33) can be written as

φ(t) = w1e
0.5(κ+a)t + w2e

0.5(κ−a)t

with w1, w2 ∈ IR. Now w1 and w2 have to be determined according to the terminal
condition B(T, T ) = α. Due to our above ansatz for B we get

B(t, T ) = −w1(κ + a)e0.5(κ+a)t + w2(κ− a)e0.5(κ−a)t

σ2(w1e0.5(κ+a)t + w2e0.5(κ−a)t)
. (34)

Hence, B(T, T ) = a leads to

w1

(
α + κ+a

σ2

)
e0.5aT = −w2

(
α + κ−a

σ2

)
e−0.5aT (35)

for w1 or w2. If α = −(κ + a)/σ2, we have w2 = 0 and, consequently, we end up
with (25). Assuming α 6= −(κ + a)/σ2, we obtain

w1 = −w2

α + κ−a
σ2

α + κ+a
σ2︸ ︷︷ ︸

=:k

e−aT .

Plugging this result into (34), we get (24). If k ≥ 1 the denominator of B has a
null and, consequently, B is not well-defined. We therefore need conditions which
exclude k ≥ 1. Since a > 0, we have α + κ−a

σ2 < α + κ+a
σ2 . If α + κ+a

σ2 > 0 we get
k < 1, but if α + κ+a

σ2 < 0 we obtain k > 1. Hence, (19) leads to a well-defined
function B. Integrating (22) we get (23), which is well-defined due to (19).

2nd case: a = 0. Then all solutions of (33) can be written as

φ(t) = w1e
0.5κt + w2te

0.5κt

with w1, w2 ∈ IR. If α = −κ/σ2, we obtain the same result (25) as in the 1st case
with α = −(κ+a)/σ2. Otherwise one can again show that A and B are well-defined
real-valued C1-functions. 2
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Proof of Proposition 5.2. The process

Z(t) = exp
(
− 0.5( γ

1−γ )2ρ2λ̄2

∫ t

0

z(s) ds + γ
1−γ ρλ̄

∫ t

0

√
z(s) dW1(s)

)

is at least a supermartingale because it is a positive local martingale. Thus it is
sufficient for Z to be a density if E(Z(T )) = 1. Due to the dynamics of the squared
volatility (15) we obtain

∫ t

0

σ
√

z(s) dW1(s) = z(t)− z(0)−
∫ t

0

κ(θ − r(s)) ds. (36)

Therefore, we get Z(t) = R(t) · exp
(− γ

1−γ ρ λ̄
σ (z(0) + κθt)

)
with

R(t) := exp
(

γ
1−γ ρ λ̄

σ︸ ︷︷ ︸
=:−α1

z(t) +
∫ t

0

[
γ

1−γ ρ λ̄
σ κ− 0.5

(
γ

1−γ ρλ̄
)2

︸ ︷︷ ︸
=:−β1

]
z(s) ds

)
.

By Proposition 5.1, the process R has a representation (20) if

β1 ≥ − κ2

2σ2 , (37)

α1 ≥ −κ+a1
σ2 (38)

with a1 =
√

κ2 + 2β1σ2. As κ2 + 2β1σ
2 = (κ− γ

1−γ ρλ̄σ)2 ≥ 0, the inequality (37)
is always satisfied. Further, we get a1 = |κ− γ

1−γ ρλ̄σ|. Since the second inequality
(38) can be rewritten as a1 ≥ γ

1−γ ρλ̄σ−κ, it is always met, too. Thus we can apply
Proposition 5.1 to R. For all parametrizations of the model one can then show that
E(R(T )) = exp

(
γ

1−γ ρ λ̄
σ (z(0) + κθt)

)
and this implies E(Z(T )) = 1. Hence, Z is a

density by all means. Note that due to the specific structure of R the condition
(38) holds as equality if (37) holds as equality. Therefore, we only have to consider
the representations given by (23) and (24) as well as by (25).

Now we have to check under which conditions f is a real-valued function having the
representation (26). We want to stress that we are now working under the measure
P̃ and thus have to use the representation (16) of z. The function f can be rewritten
as

f(t, z) = e
γ
c r(T−t)Ẽ

t,z
(

e
−β̃

∫ T

t
z(s)ds

)

with β̃ = −0.5 1
c

γ
1−γ λ̄2 and c = 1−γ

1−γ+ρ2γ . Applying Proposition 5.1, f is real-valued
and possesses the representation (26) if8

β̃ > − κ̃2

2σ2
, (39)

0 > − κ̃ + ã

σ2
(40)

with ã =
√

κ̃2 + 2β̃σ2. Since κ̃ = κ− γ
1−γ ρλ̄σ, the inequality (39) can be rewritten

as
κ− 2 γ

1−γ ρλ̄σ > γ
1−γ

λ̄2σ2

κ (41)

and this is equivalent to (27). Further, from (41) it follows (28). As ã > 0, condition
(40) is satisfied. The representation of Bf follows from (24). 2

8Actually, f also has these properties if one or both conditions hold as equality. We do not

consider these cases here because we will exclude them later on.
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Proof of Theorem 5.1. To shorten notations, let X∗ = Xπ∗ , Ã = Af , and
B̃ = Bf . Since π∗ is bounded and (11) holds, it remains to show that π∗ has
property U. To verify this, we show in the sequel that there exists some q > 1 such
that we have

sup
p

E
(
|G(θp, X

∗(θp), z(θp))|q
)

< ∞. (42)

By the results of Section 3 and Proposition 5.2, we obtain

G(t,X∗(t), z(t)) = 1
γ X∗(t)γ ·

(
f(t, z(t))

)c

with c = 1−γ
1−γ+ρ2γ and f(t, z) = exp

(
γ
c r(T − t)− Ã(t, T )− B̃(t, T )z

)
. Here Ã(·, T )

and B̃(·, T ) are real-valued C1-functions which are bounded on [0, T ]. Let q be some
real number with q > 1. Defining ε := q − 1 > 0 we get

|G(t,X∗(t), z(t))|q

= det(t) · exp
[
qγ

∫ t

0

(
π∗(s)λ̄− 0.5π∗(s)2

)
z(s) ds + qγ

∫ t

0

π∗(s)
√

z(s)ρ dW1(s)

+0.5q2γ2

∫ t

0

π∗(s)2z(s)(1− ρ2) ds− qcB̃(t, T )z(t)
]
·D(t)

= det(t) · exp
[ ∫ t

0

q
{

0.5γλ̄2c
1−γ − 0.5γ(1−γ)

c

(
π∗(s)− λ̄ c

1−γ

)2

+0.5εγ2π∗(s)2(1− ρ2)
}

z(s) ds + qγρ

∫ t

0

π∗(s)
√

z(s) dW1(s)

−qcB̃(t, T )z(t)
]
·D(t) (43)

with

D(t) = exp
(
−0.5q2γ2(1−ρ2)

∫ t

0

π∗(s)2z(s) ds+qγ
√

1− ρ2

∫ t

0

π∗(s)
√

z(s) dW2(s)
)

and det(t) is a positive deterministic term which is bounded on [0, T ]. By (29), by
the SDE of z, and by Ito’s formula, it follows

∫ t

0

π∗(s)
√

z(s) dW1(s) (44)

= 1
1−γ

λ̄
σ

[
z(t)− z(0)−

∫ t

0

κ(θ − z(s)) ds

]

− cρ
1−γ

[
B̃(t, T )z(t)−

∫ t

0

B̃(s, T )κ(θ − z(s)) ds−
∫ t

0

B̃t(s, T )z(s) ds

]
,

where B̃t denotes the partial derivative with respect to t. Besides, we have
(
π∗(s)− λ̄ c

1−γ

)2

= 1
(1−γ)2

(
(1− c)λ̄− cσρB̃(s, T )

)2

. (45)

Plugging (44) and (45) in (43) leads to

|G(t,X∗(t), z(t))|q (46)

= det2(t) · exp
[ ∫ t

0

q
{

0.5γλ̄2c
1−γ − 0.5 γ

c(1−γ)

(
(1− c)λ̄− cσρB̃(s, T )

)2

+0.5εγ2π∗(s)2(1− ρ2) + ρ γ
1−γ

λ̄
σ κ− γ

1−γ ρ2c
(
κB̃(s, T )− B̃t(s, T )

)}
z(s) ds

+q

{
ρ γ

1−γ
λ̄
σ − B̃(t, T )

}
z(t)

]
·D(t),
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where “det2(t)” stands for some positive deterministic term which is bounded on
[0, T ]. To proceed, we need some results on the coefficients of the problem which
are stated in the following lemma:

Lemma 6.1 The following equality holds:

0.5γλ̄2c
1−γ − 0.5 γ

c(1−γ)

(
(1− c)λ̄− cσρB̃(s, T )

)2

+ ρ γ
1−γ

λ̄
σ κ (47)

− γ
1−γ ρ2c

(
κB̃(s, T )− B̃t(s, T )

)
= γ

1−γ λ̄
(

λ̄
2 + κρ

σ

)
.

Besides, ρ γ
1−γ

λ̄
σ − B̃(t, T ) < κ

σ2 , (48)

where it is assumed that (27) is satisfied.

Proof of (47). First note that

−0.5 γ
c(1−γ)

(
(1− c)λ̄− cσρB̃(s, T )

)2

= −0.5 γ
1−γ

1
c (1− c)2λ̄2 + γ

1−γ (1− c)λ̄σρB̃(s, T )− 0.5 γ
1−γ cσ2ρ2B̃2(s, T ).

Consequently,

0.5γλ̄2c
1−γ − 0.5 γ

1−γ
1
c (1− c)2λ̄2 + γ

1−γ (1− c)λ̄σρB̃(s, T )− 0.5 γ
1−γ cσ2ρ2B̃2(s, T )

+ρ γ
1−γ

λ̄
σ κ− γ

1−γ ρ2cκB̃(s, T ) + γ
1−γ ρ2cB̃t(s, T )

= 0.5γλ̄2c
1−γ − 0.5 γ

1−γ
1
c (1− c)2λ̄2 + ρ γ

1−γ
λ̄
σ κ

+ γ
1−γ ρ2c

[
1−c
cρ λ̄σB̃(s, T )− 0.5σ2B̃2(s, T )− κB̃(s, T ) + B̃t(s, T ) + β̃

︸ ︷︷ ︸
(21)
= 0

−β̃
]

= γ
1−γ λ̄

(
λ̄
2 + κρ

σ

)
.

Note that B̃ meets ODE (21) with κ = κ̃ and β = β̃, where β̃ = −0.51
c

γ
1−γ λ̄2.

Additionally, 1−c
cρ = γ

1−γ ρ, which leads to κ− 1−c
cρ λ̄σ = κ̃.

Proof of (48). Recall that

B̃(t, T ) = 2β̃
eã(T−t) − 1

eã(T−t)(κ̃ + ã)− κ̃ + ã
,

where β̃ = −0.51
c

γ
1−γ λ̄2, ã =

√
κ̃2 + 2β̃σ2, c = 1−γ

1−γ+ρ2γ , and κ̃ = κ− γ
1−γ ρλ̄σ. First

note that β̃ < 0 and −B̃ ≥ 0. For t ∈ [0, T ) we get

B̃(t, T ) = 2β̃
1

κ̃ + ãh(t)
,

where h is a deterministic function with h ≥ 1. By (28) and (39), this leads to the
estimate

−B̃(t, T ) = 2(−β̃)
1

κ̃ + ãh(t)
≤ 2(−β̃)

1
κ̃

<
κ̃

σ2
.

Therefore,

ρ γ
1−γ

λ̄
σ − B̃(t, T ) < ρ γ

1−γ
λ̄
σ + κ̃

σ2 = 1
σ2

(
ρ γ

1−γ λ̄σ + κ− γ
1−γ ρλ̄σ

)
= κ

σ2 .
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Since B̃(T, T ) = 0, this relation is also valid for t = T because of (28). This
completes the proof of Lemma 6.1.

Now we proceed with the proof of (42). By (47) and (48), we get the following
estimate for (46):

|G(t,X∗(t), z(t))|q
(47)
= det2(t) · exp

[ ∫ t

0

q
{

γ
1−γ λ̄

(
λ̄
2 + κρ

σ

)
+ 0.5εγ2π∗(s)2(1− ρ2)

}
z(s) ds

+q
{

ρ γ
1−γ

λ̄
σ − B̃(t, T )

}
z(t)

]
·D(t)

(48)

≤ det2(t) · exp
[ ∫ t

0

q
{

γ
1−γ λ̄

(
λ̄
2 + κρ

σ

)
+ 0.5εγ2π∗(s)2(1− ρ2)

}
z(s) ds

+q κ
σ2 z(t)

]
·D(t)

= det2(t) · exp
[ ∫ t

0

q
{

γ
1−γ λ̄

(
λ̄
2 + κρ

σ

)
+ 0.5εγ2π∗(s)2(1− ρ2)

}
z(s) ds

+q κ
σ2

{
z(0) + κ

∫ t

0

(θ − z(s)) ds + σ

∫ t

0

√
z(s) dW1(s)

}]
·D(t)

= det3(t) · exp
[ ∫ t

0

q
{

γ
1−γ λ̄

(
λ̄
2 + κρ

σ

)
+ 0.5εγ2π∗(s)2(1− ρ2)

}
z(s) ds

−q κ2

σ2

∫ t

0

z(s) ds + q κ
σ

∫ t

0

√
z(s) dW1(s)

]
·D(t)

= exp
[ ∫ t

0

q
{

γ
1−γ λ̄

(
λ̄
2 + κρ

σ

)
+ 0.5εγ2π∗(s)2(1− ρ2)− 0.5(1− ε)κ2

σ2

︸ ︷︷ ︸
(∗)

}
z(s) ds

−0.5(1 + ε︸ ︷︷ ︸
=q

)q κ2

σ2

∫ t

0

z(s) ds + q κ
σ

∫ t

0

√
z(s) dW1(s)

]
·D(t) · det3(t),

where “det3(t)” stands for some positive deterministic term which is bounded on
[0, T ]. Since π∗ is bounded and, by assumption, (27) holds as strict inequality, we
can choose some ε > 0 such that the above term (*) is smaller than zero. To this
end, we get

|G(t,X∗(t), z(t))|q

≤ det3(t) · exp
[
− 0.5q2 κ2

σ2

∫ t

0

z(s) ds + q κ
σ

∫ t

0

√
z(s) dW1(s)

]
·D(t)

︸ ︷︷ ︸
=:L(t)

,

where L is (at least) a local martingale which is positive. Therefore, L is a super-
martingale. By the optional stopping theorem (OS),9 we obtain for all stopping
times θp with 0 ≤ θp ≤ T

E
(
|G(θp, X

∗(θp), z(θp))|q
)

≤ E
(
det3(θp) · L(θp)

)
≤ sup

t∈[0,T ]

det3(t) · E
(
L(θp)

) OS≤ sup
t∈[0,T ]

det3(t) < ∞

and this proves Theorem 5.1. 2

9See e.g. Karatzas/Shreve (1991), p. 19.
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